
MING: Model- and View-Based
Deployment and Adaptation of Cloud Datacenters ?

Ta’id Holmes

Infrastructure Cloud, Deutsche Telekom Technik GmbH
Darmstadt, Germany

t.holmes@telekom.de

Abstract For the configuration of a datacenter from bare metal up to the level of
infrastructure as a service (IaaS) solutions, currently, there is neither a standard
nor a common datamodel that is understood across deployment automation tools.
Following a model- and view-based approach, MING (明) aims at holistically
describing cloud datacenters. Establishing a respective metamodel, it supports
different stakeholders with tailored views and permits utilization of arbitrary
deployment tools for providing the basic cloud service model. In addition to
initial deployments, it targets (model-based) adaptation of datacenters for covering
operational use cases such as extending a cloud with additional resources and for
providing for software upgrades and patches of the deployed solutions.

Keywords: adaptation, cloud, code generation, configuration, datacenter, deploy-
ment, DSL, IaaS, MBE, metamodel, OpenStack, SDN

1 Introduction

The cloud computing paradigm continues to change the way end-users consume services
and communicate (cf. [31]). At the same time service providers adapt (cloudify) software
services (cf. [2]) for profiting from the benefits of cloud computing (cf. [18]). Among
them are the possibility to meet changing workloads through elastic scaling, to make
efficient use of resources, e.g., through multitenancy, an on-demand usage and pricing
model, as well as defined models and roles in regard to infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service (SaaS) (cf. [33]).

Thus, cloud computing penetrates all levels from datacenters (DCs) to end-users.
On an infrastructure level cloud computing offers (virtualized) hardware resources and
network capabilities as IaaS. This impacts the design and deployment of DCs.

For this reason the planning, implementation, and operation of DCs has changed.
Above all, cloud DCs distinguish themselves from traditional DCs by having an IaaS
solution deployed. The IaaS solution establishes the correspondent service model while
managing the DC resources. These resources comprise computational power from central
processing units (CPUs), random-access memory (RAM), storage in the form of objects
stores or block devices from hard drive disks (HDDs) and solid-state drives (SSDs), and
network interfaces. All of these need to be registered and managed by the IaaS solution.

? This is an extended version of a former contribution [23] incorporating post-deployment aspects.

http://t.holmes.info/research
http://telekom.com

OpenStack [42] is a popular IaaS solution with a big community and support across
industries. For easing the installation and deployment of OpenStack various automated
deployment technologies and tools exist. Often they are provided from an operating
system (OS) vendor as a kind of value proposition.

Software-defined networking (SDN) (cf. [32]) and storage (cf. [56]) solutions may
be deployed in addition to OpenStack. Providing a scalable networking architecture
beyond other benefits, the former eases the planning of DCs. The later offers storage as
a service (e.g., in form of a block device or object storage) towards OpenStack.

For realizing the installation of bare machines and the deployment of SDN, storage,
and IaaS solutions, currently, various information needs to be aggregated in configura-
tions by experts who are familiar with the technologies. Often the information relates to
different aspects and is scattered and tangled and needs to be kept consistent. Changes in
the design or characteristics of a DC may impact the configuration fundamentally: e.g.,
number of availability zones in a DC, dedication of a certain node to some aggregate 1,
or networking.

Ideally, it would be possible to describe the various aspects of a cloud DC (e.g., the
hardware and the networking) and its deployment (i.e., OSs and the services) conceptu-
ally in a domain-specific language (DSL) that is tailored towards the respective experts
so that from such information as contained in the respective views the automated DC
deployment can take place. While several deployment tools exist (that in fact can all
be made use of following the model-based approach) there is no technology agnostic
datamodel for specifying a DC deployment that is understood by tools.

Therefore, MING (明), a model-based approach, is proposed: it permits the model-
and view-based description of DCs and respective IaaS deployments by means of a
platform-independent model (PIM). This way, separation of concerns (SoC) is realized
supporting different stakeholders. Also, integration with existing tools is realized using
code generation. Finally, for supporting operational aspects MING aims at supporting
post-deployment adaptation scenarios.

The remainder is structured as follows: The following section further introduces
the context by explaining tasks when deploying and maintaining a cloud DC. Prior to
presenting the MING approach in Section 5, Section 3 relates to the state of the art
and Section 4 presents some background on model-based engineering (MBE). Next,
Section 6 presents some details of the current prototype. Section 7 discusses on the
benefits, risks, and limitations and Section 8 concludes.

2 Automated Datacenter Deployment

The planning, setup, implementation, and operation of a DC comprises multiple activities
involving hard- and software. Prior to focusing on the latter, i.e., the automated software
installation and deployment, this section first looks at the structure of DCs.

1 In order to profit from Enhanced Platform Awareness (EPA) host aggregates can be defined in
OpenStack. Resources can be allocated within such aggregates for hosting services that want
to make use of features such as hugepages, Non-Uniform Memory Access (NUMA), or CPU
pinning for achieving high throughput.

http://openstack.org
http://openstack.org
http://openstack.org
http://openstack.org
http://openstack.org

name : EString

DataCenter

name : EString
desc : EString

AvailabilityZone

name : EString
desc : EString

Rack

name : EString
nodeType : NodeTypeName = standby
desc : EString
arch : Arch = amd64
ram : EInt

Node

diskType : DiskType = HDD
desc : EString
dev : EString

Disk

mac : EString
dev : EString

NIC

size : EInt
unit : Unit = GB

Size

id : EInt

DeviceID

standby
installation
management
compute
network
storage

NodeTypeName

name : EString
desc : EString
vlanID : EInt
ip : EString
netmask : EInt

Network

*

racks

* nodes

* azs

* nics* disks

1 deviceID

1 net

1 diskSize

Figure 1: A Datacenter Metamodel

2.1 Structure of Datacenters

Nowadays, a DC follows a Leaf-Spine topology (cf. [1]) and is connected to the core
network through datacenter routers (DCRs). For this, each top of the rack router (ToR)
is fully meshed to the spine layer. Establishing predictability in latency as well as
redundancy for achieving high availability, any spine router is thus connected to every

DCR as well as ToR. Similarly, a dedicated operations, administration, and management
(OAM) network comprises bottom of the rack routers (BoRs).

Figure 1 depicts a simple metamodel for DCs (that is also part of the MING meta-
model, cf. Figure 2). A DATACENTER comprises one or several AVAILABILITYZONES.
These may be fire compartments that are separated from each other. Each AVAILABILI-
TYZONE contains RACKS for mounting equipment such as routers and servers (NODE).
A server comprises network interface controllers (NICs), CPU, RAM, and storage in
form of HDDs and/or SSDs. Each NIC has a unique media access control (MAC) ad-
dress. For networking (cf. Layer 3 of the Open Systems Interconnection (OSI) reference
model [58]) a NIC will be configured at some stage with an Internet Protocol [10]
(IP) address, e.g., using Dynamic Host Configuration Protocol [17] (DHCP). Within a
NETWORK (i.e., IP and NETMASK) a NIC has a particular DEVICEID (e.g, the last bit(s)
of the address).

INSTALLATION nodes are used for bootstrapping the DC deployment. Generally it
is possible to group servers into different categories: STORAGE nodes contain a large
amount of storage capacity while COMPUTE nodes have high computational power.
NETWORK nodes comprise fiber optical NICs for high bit rates. Finally, MANAGEMENT
nodes are dedicated for hosting IaaS services (see also Section 2.2).

Intelligent Platform Management Interface [25] (IPMI) may provide an administra-
tive access to the servers through a dedicated network. Besides, all servers may be part
of multiple physical or virtual (VLANID) networks. For example, storage nodes may
have a backend network for replication in addition to a frontend network for the data.

2.2 Software Installation

Given a DC with a completed physical setup including networking and cabling, deploy-
ment of an SDN solution, and configuration of the network devices installation of the
bare machines can take place (see also Section 3.1). That is, on each node a base OS is
installed over the net, e.g., using IPMI and Preboot Execution Environment [24] (PXE)
together with a DHCP server. Yet, some information needs to be collected beforehand
and placed at the DHCP server such as the MAC addresses of the NICs. This information
may be discovered automatically. For the software installation a local mirror can be
made use of (see also Section 2.3).

Next, IaaS services can be installed (see also Section 3.2). STORAGE servers may
deploy Ceph [56], a distributed object store. MANAGEMENT nodes host services such as
OpenStack Identity Service (Keystone), OpenStack Compute (Nova) cloud controller,
OpenStack Orchestration (Heat), and OpenStack Dashboard (Horizon). COMPUTE nodes
run Nova. Finally, OpenStack Networking (Neutron) is used for NETWORK nodes and
integrates with a deployed SDN solution through a respective plugin.

2.3 Software Projects, Artifacts, and Version Control

For such a described deployment, several software projects and subprojects have to be
considered. In this context, we need to distinguish between up- and downstream projects.
Upstream projects hold their own repositories where (community) development takes
place. Downstream projects take releases delivered by upstream projects and customize

http://keystone.openstack.org
http://nova.openstack.org
http://docs.openstack.org/developer/heat/
http://wiki.openstack.org/horizon
http://wiki.openstack.org/neutron

these, e.g., for a respective OS or a container engine. Thus, they produce software
artifacts such as Debian or RedHat Package Manager (RPM) packages or Docker [16,4]
images.

For an IaaS provider it is crucial to know what versions of the respective projects
are (to be) deployed and to control the software update and upgrade. Addressing this
requirement, a local mirror may be deployed on installation nodes that stores all the
software artifacts. Such a mirror also permits the provider to gain independence towards
external services and resources. For this, prior to an automated installation for a pro-
duction environment, the provider holds a self-contained set of data (software images,
packages, configuration management (CM) artifacts). Acting as a caching proxy in a test
environment, such a mirror may be populated in the course of an initial installation. This
way, all the required software packages can be captured and identified easily. Versions
that shall be foreseen for production can be frozen in a review, e.g., using a tagging
mechanism. This is important in regard to reproducibility as required for production.

Once a new version of a software artifact becomes available, e.g., in public mirrors,
an operations team is notified and the artifact is scheduled for testing and in case of
success promoted to the next delivery stage.

2.4 Datacenter Scaling

One of the distinguishing features of cloud applications is their ability to scale hori-
zontally (cf. [18]). That is, resources are provisioned dynamically on-demand (referred
to as elastic scaling) when experiencing changing workloads. It is only consequent to
translate this principle into the context of DCs and apply it to physical resources as well.

One of the implications is that an IaaS deployment may start small and grow bigger
over time. As a result, a DC is only partially deployed with racks, initially. The more and
more applications are onboarded over time additional racks are ordered and integrated
into the DC and the IaaS deployment. This iterative deployment of DCs is interesting
from an economic point of view. As mentioned, a Leaf-Spine topology and SDN eases
the scaling within a DC. In the context of OpenStack the Tuskar project of TripleO offers
an approach how to address the scaling of IaaS deployments (see also Section 3.2).

Generally, new resources such as compute or storage nodes shall be integrated into
the cloud, e.g, OpenStack or Ceph, posterior to an initial deployment. Also it shall be
possible to seamlessly replace faulty hardware.

Having briefly introduced the deployment of cloud DCs, the following section
discusses different existing deployment tools for realizing the installation.

3 State of the Art

Prior to presenting the MING approach let us first have a look at the state of the art. At
the end of this section, a current shortcoming of the existing deployment technologies
is summarized for positioning the contribution of MING. As outlined in the previous
section there are at least two distinct phases in the deployment of DCs: bare machine and
IaaS installation with some of the tools focusing on the former and others on the latter.

http://docker.com
http://openstack.org
http://wiki.openstack.org/Tuskar
http://wiki.openstack.org/TripleO
http://openstack.org

3.1 Bare Machine Installation

The following selection of tools and projects specializes on installing a base OS on bare
machines (cf. [11] for the evaluation of some frameworks).

Cobbler [13] is a lightweight build and provisioning system for the deployment of
physical and virtual machines. Objects and variables are used for configuring the provi-
sioning. These are then applied in templates, e.g., for generating preseed files. This way,
i.e., through templates, Cobbler also integrates with Kickstart [44]. Generally, integra-
tion with existing tools and CM systems is encouraged. In addition to a command-line
interface (CLI) there is a also a web user interface (UI). Cobbler is currently used by
Compass and Fuel (see Section 3.2).

Fully Automatic Installation [19,29,28] (FAI) – with a particular focus on unattended
automated installations – builds, as Cobbler, on top of technologies such as PXE, DHCP,
and Trivial File Transfer Protocol [48] (TFTP). Originally focusing on Debian-based [47]
distributions, FAI has been adopted for CentOS [50]. It realizes profiles in addition to a
class concept that can help to describe complex setups.

OpenStack Bare Metal Provisioning [39] (Ironic) is used for the provisioning of
physical machines within OpenStack. Thus, in contrast to the other tools of this category,
it is not a self-contained system. Its functionality is used by TripleO and will also be
relied on by Fuel.

Metal as a service [8] (MAAS) is used for the provisioning of OSs in combination
with JuJu [7] and Charms (see Section 3.2). Similar to Cobbler and FAI, a MAAS server
acts as a DHCP server for the provisioning of machines. Hosts (physical or virtual) can
be put under control of a MAAS server. Configuration such as MAC to IP mapping can
be done in a YAML Ain’t Markup Language (YAML) file (see also Section 6).

3.2 OpenStack Installation

The automated provisioning, configuration, and installation of services is addressed by
CM systems such as Ansible [14], Chef [12], JuJu, or Puppet [43]. Thus, after each node
has been installed with an OS, the installation and configuration of IaaS services can be
realized using CM. For the deployment of OpenStack there is a variety of existing tools:

Compass [37] supports different CM systems through a plugin architecture. By estab-
lishing abstraction layers, it also decouples resource discovery and bare metal installation.
Besides, it facilitates operations support system (OSS) integration through a northbound
interface (NBI).

http://cobbler.github.io
http://cobbler.github.io
http://github.com/rhinstaller/pykickstart
http://cobbler.github.io
http://wiki.openstack.org/wiki/Compass
http://wiki.openstack.org/Fuel
http://cobbler.github.io
http://debian.org
http://centos.org
http://openstack.org
http://wiki.openstack.org/TripleO
http://wiki.openstack.org/Fuel
http://jujucharms.com
http://cobbler.github.io
http://yaml.org/spec/1.2/spec.pdf
http://jujucharms.com
http://puppetlabs.com
http://openstack.org
http://wiki.openstack.org/wiki/Compass

Crowbar [15] is a project that relies on the Chef CM system for the deployment of
applications such as OpenStack or Hadoop [49]. In contrast to other solutions of this
category it does not presume but also realizes bare metal installation and comes with a
web UI.

Fuel [38] offers a web UI frontend for the deployment of OpenStack in addition to a
CLI. Cobbler is currently used under the hood, yet, migration to OpenStack Bare Metal
Provisioning (Ironic) is intended. Puppet is used for CM. Some features comprise the
automated discovery of nodes and the possibility to perform pre-deployment checks.

JuJu is an orchestration technology that is also used for MAAS. JuJu bundles de-
scribe the orchestration of applications. Charms, classified by Wettinger et al. [57] as
environment-centric artifacts, deploy the actual OpenStack services of JuJu bundles.
Thus, the deployment of OpenStack is specified in a JuJu YAML file referencing different
charms that are related to respective upstream projects.

Packstack [41] provides Puppet modules for OpenStack projects. Using Puppet for CM,
the various OpenStack services can be deployed. Thus, some front-end deployment tools
such as RPM Distribution of OpenStack [45] (RDO) (see below) make use of Packstack.
Currently, distributions based on RPM are supported.

RDO is a web-based deployment tool based on Foreman [27], a Ruby on Rails [21]
application and frontend for the CM with Puppet. Therefore Packstack is used.

TripleO [40] is an exception to the CM-based solutions. Instead of relying on such,
TripleO aims at realizing the functionality using OpenStack’s own cloud features for
facilitating installation, management, and operation. For this, a deployment cloud (a.k.a.
undercloud) needs to be setup first. Using Ironic workload cloud(s) (a.k.a. overcloud(s))
are deployed. The deployment and configuration of nodes is realized using Heat. For
this golden images need to be prepared. These consist of a base OS with elements on top
(resembles FAI class and profile concept). During provisioning a node will configure
itself using the parameters from a Heat Orchestration Template (HOT) that constitutes
the deployment plan. Finally, an overcloud can be scaled using the Tuskar subproject.

3.3 Positioning and Contribution of MING

Currently, there is neither a standard nor a common datamodel for the configuration
of an OpenStack deployment in a cloud DC. As a result, none of the projects exposes
its configuration in a form that can be used by other projects. This however would be
interesting in order to evaluate different frameworks and avoid tool dependencies. TripleO
– aiming at avoiding any third party dependency for the deployment of OpenStack
– is a particular case. It is using HOT for realizing the CM. This way, it decouples
the configuration from the automated deployment. It may be argued that HOT is an

http://crowbar.github.io
http://getchef.com
http://openstack.org
http://hadoop.apache.org
http://wiki.openstack.org/Fuel
http://openstack.org
http://cobbler.github.io
http://wiki.openstack.org/Ironic
http://wiki.openstack.org/Ironic
http://jujucharms.com
http://jujucharms.com
http://openstack.org
http://jujucharms.com
http://openstack.org
http://jujucharms.com
http://wiki.openstack.org/Packstack
http://puppetlabs.com
http://openstack.org
http://puppetlabs.com
http://openstack.org
http://rdoproject.org
http://wiki.openstack.org/Packstack
http://puppetlabs.com
http://wiki.openstack.org/Packstack
http://openstack.org
http://wiki.openstack.org/Tuskar
http://openstack.org
http://wiki.openstack.org/TripleO
http://openstack.org

established format that other tools could implement. Yet, this is not feasible, as it dictates
orchestration through Heat. Not only Heat but also JuJu is an orchestration technology.
In both cases, therefore, configuration needs to be expressed in a particular syntax and
way by experts leading to the problems mentioned such as scattering and tangling.

MING in contrast truly decouples configuration from automated deployment tech-
nologies. It declarativly permits the view-based modeling of DCs and their deployments,
facilitating SoC. As a result, stakeholders that are not familiar with the used deployment
technologies and/or other concerns of the deployment are supported as well. Similar
in spirit with Cobbler MING integrates with arbitrary tools and frameworks (as also
envisioned by Compass) through code generation. Last but not least, it establishes a
deployment tool-agnostic metamodel that serves as a datamodel for DC deployments.

4 Background on Model-Based Engineering

This work follows an MBE approach as outlined in the next section. Thus, this section
briefly gives some background information regarding MBE.

MBE is a paradigm of software engineering that establishes models as first-class
entities (cf. [36]). Metamodels are used for formally describing concepts on a distinct
level of abstraction (cf. [5]). Models, that need to conform to such metamodels, can be
validated and are usually used in model transformations. Finally, model transformations
(cf. [34]) map models such as in a model-to-model (M2M) transformation or a code gen-
eration (model-to-text (M2T) transformation). In case of forward engineering, resulting
models generally conform to metamodels with a lower level of abstraction. This is for
example the case when a PIM is mapped to a platform-specific model (PSM) or when
code is generated.

In this work, MBE is used for establishing a metamodel that describes the IaaS
deployment of a DC from bare metal. As the metamodel is agnostic towards deployment
tools is can be classified as a PIM. Conforming models are transformed through code
generation to target technologies.

4.1 Domain-Specific Languages

While metamodels are abstract in their nature, one or more (concrete) DSLs can define
each a particular syntax for a metamodel (also called abstract DSL) that is tailored
towards stakeholders of a respective domain (cf. [35,55]). This way, it is possible to
express and represent models using a graphical or textual syntax as defined by the
language. Models that are expressed in a DSL can be transformed and represented
in another DSL. Similarly to general purpose programming languages and compilers,
models expressed in higher-level DSLs can be translated to lower-level language artifacts.
In fact, models expressed in DSLs can also be mapped to general purpose programming
languages.

4.2 View Models

The principle of SoC is proven to be a successful approach to manage complexity. In
MBE, it is realized using view models. That is, different concerns are separated into

http://jujucharms.com
http://cobbler.github.io
http://wiki.openstack.org/wiki/Compass

distinct views. This enables different stakeholders to relate to concerns which are relevant
to them more easily. Within the domain of software architecture, for example, view
models have been established and standardized (cf. [26]).

In this work, a DSL that is bound to the MING metamodel defines various views that
describe different aspects of the deployment such as inventory, networking, and IaaS
configuration options.

5 Approach: Abstracting from Technologies

The approach aims at a tool agnostic, declarative specification of configuration for realiz-
ing an IaaS deployment in a cloud DC from bare machines. For this, configurations from
existing provisioning and deployment technologies need to be sublimated using reverse
MBE. That is, models are established through abstraction. Given a valid deployment
plan DC specific values and repetitive code need to be identified in a first step.

5.1 Establishing Models through Abstraction

For capturing respective information in models, a conceptual metamodel is derived and
templates are created in a next step. Finally, integration with the target technologies
is realized using code generation. That is, the same code is generated using the MBE
approach. As a result, a conceptual modeling layer is established with sublimated
configuration in form of models.

Figure 2 depicts the MING framework. As an interface for populating, expressing, and
representing models, a textual DSL is bound to the MING metamodel (i.e., abstract DSL).
In order to support SoC, distinct views permit the expression of different aspects. One
view, e.g., covers the DC related inventory information as depicted in the metamodel
shown in Figure 1. Other views capture networking, node assignments (e.g., to an
aggregate), OpenStack specific configuration, and credentials.

For supporting convention over configuration, defaults can be expressed in mod-
els too, that are applied to models in case of missing configuration. Finally, model
transformation processes the (resulting) models and generates code using templates.

5.2 Model-Based Adaptation

The above described code generation is suitable for initial deployments. As the approach
is generally limited to such, post-deployment adaptation scenarios are not supported per
se, however. Such adaptation scenarios comprise the addition of new DC resources to
the cloud, e.g., in the form of new racks or the reassignment of nodes to some aggregates
as pointed out in Section 2.4. The latter may become necessary if free resources run low
within such an aggregate, e.g., as required for services that make use of EPA features.
In such a case (unused) – e.g., compute – nodes may be reassigned to a corresponding
host aggregate. This implies evacuation and a complete redeployment of the node, i.e.,
migration of remaining resources such as server instances, a wipe-out of existing disks,
a new OS installation, deployment of appropriate services, and, finally, integration into
the target aggregate.

Modeling Cloud Datacenter Deployments (MING)

Default Models

Target Technologies (e.g., MAAS & JuJu)

Models

MING Textual Domain Specific Language (concrete DSL)

abstraction

conform to

corresponds to expressed in

defines

MING Metamodel (abstract DSL)

sublimation

MING Views (e.g., Inventory (cf. Fig. 1) or Networking)

code generation

Templates

Figure 2: Approach Overview: The MING Framework

Without support of operational aspects the models – apart from describing and real-
izing initial deployments – would be of no further use. Yet, because of their conceptual
level of abstraction and the availability of multiple views, they are also interesting for
later stages of the DC lifecycle.

Ideally, it would be possible to change such models and automate a respective
adaptation. In either case it would be beneficial to describe the impact for the various
possible changes and simulate an adaptation. This way, cloud engineers – while changing
the models – could interactively receive information on the respective impact and further
guidance. Table 1 lists and describes some possible model changes based on the inventory
concepts of the MING metamodel as shown in Figure 1. Such changes can be stored
in a diff-model, i.e., a model that comprises model differences between two models
conforming to the same metamodel.

In case of resources it is possible to base an execution engine on processing such a
diff-model (cf. [22]). That is, for every change a model transformation is performed for
generating respective adaptation actions related to application programming interface
(API) calls (e.g., the provisioning of a resource).

In this regard it seems promising to adopt such an adaptation approach that permits for
an incremental deployment. Yet, beyond resources the MING metamodel also comprises
other concerns such as networking or configuration options. In contrast to resources that
can be added or removed – just as described in each difference of a diff-model with the
kind of change and the respective model element and as supported by existing API calls –
the change impact and resulting adaptation actions cannot be determined without further

Table 1: Examples of Model Changes Related to Post-Deployment Adaptation Scenarios
Model Element Kind Description

AvailabilityZone.racks addition a rack to be integrated into a DC’s availability zone
Rack.nodes addition (new) node(s) to be integrated into the cloud
Rack.nodes deletion (faulty) node(s) to be removed from the cloud

Node.nodeType modification reassignment of a node to another category
Node.disks addition (new) disk(s) to be added to a node
Node.disks deletion (faulty) disk(s) to be removed from a node

domain knowledge. In some cases a change implies a trivial update of a configuration
option; in other cases it is not possible at all to apply the described change to an existing
IaaS deployment without affecting tenants during production.

Some adaptation scenarios relate to the patch management of an OS as well as SDN,
storage, and IaaS solutions. That is, updates such as security patches and upgrades in
case of new software releases shall be applied in existing deployments. The version
control of respective services accounts for a corresponding view. That is, distinct models
hold respective information such as releases and versions.

6 The MING Prototype

For the implementation of the MING prototype, the Eclipse Modeling Framework [51]
(EMF) was chosen as a modeling foundation. Eclipse Xtext [53] (Xtext) served for defin-
ing the DSL and its views and for obtaining a respective DSL editor. EMF Compare [52]
is used for calculating a diff-model. Finally, model transformations were implemented
in Eclipse Xtend [54] (Xtend).

In the following, the engineering process is described that was executed when
realizing the MING prototype. Also some excerpts from code generation templates are
depicted. Next, examples in form of DSL views demonstrate how the MING prototype is
used for specifying different deployment configuration options. Finally, post-deployment
scenarios are discussed.

6.1 Initial Engineering

Prior to adopting the MBE approach for basing the automation on models a MAAS
configuration and OpenStack JuJu bundle were engineered and tested. These files served
as the target code and constituted a starting point for the reverse engineering. For this,
values that are specific to a DC deployment were identified first. Next, loop statements
and rules were introduced for generating repetitive code and for improving its quality.
In this process, the target code was transformed to a M2T code generation template.
Also, a metamodel was established. For this, a grammar of a DSL was defined with the
intention to act as an interface for stakeholders for expressing and representing various
aspects related to the deployment of DCs. For supporting SoC, different concepts were
separated into distinct views. Next, the configuration options from the target code were

http://eclipse.org/Xtext
http://eclipse.org/xtend
http://openstack.org
http://jujucharms.com

sublimated into models. That is, these values were stored in models that conform to the
metamodel as used by the M2T transformation. Finally, the original code was produced
from the models using code generation. From this point on, it became possible to base
the overall deployment on models. Relating to certain views, it also became possible to
reuse models easing the deployment of multiple DCs.

nodes:
 «FOR az : dc.azs»
 «FOR rack : az.racks»
 «FOR node : rack.nodes»
 - name: «model.deployment.name»-«node.name»
 «IF node.nodeType == NodeTypeName.CN»
 tags: «getComputeAggregate(zones, node, az)»
 «ELSEIF node.nodeType == NodeTypeName.SN»
 tags: storage-«getCephPool(zones, node).name»
 «ELSEIF node.nodeType == NodeTypeName.MN»
 tags: api
 «ELSEIF node.nodeType == NodeTypeName.NN»
 tags: gateway-«getGatewayZone(zones, node).name»
 «ELSE»
 tags: standby
 «ENDIF»
 architecture: «node.arch»/generic
 mac_addresses:
 «FOR nic : getNICs(node)»
 - «nic.mac»
 «ENDFOR»
 power:
 type: ipmi
 address: «getIPMI(node)»
 user: «model.credentialsIPMI.username»
 pass: «model.credentialsIPMI.password»
 driver: LAN_2_0
 «enrichWithIPs(node)»
 «FOR nic : getNICs(node).filter[it.ip4 != null]»
 sticky_ip_address:
 mac_address: «nic.mac»
 requested_address: «nic.ip4»
 «ENDFOR»
 «ENDFOR»
 «ENDFOR»
 «ENDFOR»

Figure 3: Code Generation for Metal as a Service (MAAS) nodes with Xtend

Figure 3 depicts an excerpt from the M2T transformation for generating a MAAS
configuration. Three FOR loops iterate over all DC’s availability zones, racks, and finally
nodes. As a result an entry is generated for every node containing all of its MAC
addresses and assigned IP addresses. The latter are specified in a sticky ip address
section. Code generation assures the consistency between the MAC addresses.

Please note that a separate template that supports a different target technology can
process the same models. That is, while the models describe the overall DC deployment,
they are agnostic to actual deployment automation technologies.

http://maas.io

phase2:
 inherits: phase1
 services:
 «FOR cluster : zones.cephClusters»
 ceph-«cluster.name»:
 charm: cs:«deployment.dist.getName()»/ceph
 num_units: «cluster.nodes.size»
 options:
 osd-devices: «deployment.ceph.osdDevices»
 osd-reformat: '«IF deployment.ceph.osdReformat»True«ELSE»False«ENDIF»'
 osd-format: '«deployment.ceph.osdFormat.literal»'
 ceph-public-network: «getNetwork(networks, 'cephFE' + cluster.name)»
 ceph-cluster-network: «getNetwork(networks, 'cephBE' + cluster.name)»
 to:
 «FOR i : 0..cluster.nodes.size-1»
 - '«deployment.name»-dc-storage-«cluster.name»=«i»'
 «ENDFOR»
 «ENDFOR»

Figure 4: Code Generation of Ceph Clusters in a JuJu Bundle with Xtend

6.2 Continuous Improvements

Yet, following an agile approach, the engineering of the target code was subject to an
iterative process. For this reason also the templates, the metamodel, and the models had
to be revised repeatedly. For comprising increments such as new features or bugfixes, the
YAML files were improved and tested by cloud engineers. When a new stable version of
target code became available, a new reverse engineering cycle was started for capturing
the respective expert knowledge in model transformations. For this, the differences in
the target code were analyzed and the template aligned accordingly. If necessary, new
concepts were added to the metamodel and the DSL views. This two-phase procedure
with a handover of target code for reverse MBE has the advantage that domain experts
can continue to work as usual and do not have to be involved closely into MBE activities
which they may not be familiar with.

As an alternative to the reverse engineering, increments were sometimes directly
realized in the metamodel and the templates. This way, complex changes can sometimes
be addressed in a more efficient manner. Generally, however, this requires a close
collaboration between MBE and domain experts or either expert knowledge in the
domain on part of an MBE expert or a fair understanding of a templating language such
as Xtend on part of the domain experts. A change that was easier to realize because
of resulting repetitive code was the assignment of nodes to some Ceph clusters or host
aggregates. Features such as modeling support for more than one Ceph cluster in a DC
were directly realized using loop statements within the transformation template (see
Figure 4).

6.3 Example Configuration and Version Control

For configuring OpenStack various variables exist for the different services. Using the
DSL editor a user profits from code completion, syntax highlighting, and validation.

http://jujucharms.com
http://openstack.org

IaaS Deployment SongThrush @ MingDC9

OperatingSystem Ubuntu

Ceph
osdFormat btrfs
osdReformat

OpenStack

Heat
workers 8
hiddenTags "generated"

Neutron
externalBridge "br-ext"
overlayNetType "gre vxlan"
l3_ha
l3_agents 2–4
mtu 9000

Nova
liveMigration
mtu 9000

Percona
maxConnections 12345

Figure 5: Configuration of an IaaS Deployment – DSL View

Figure 5 shows an example configuration view for the deployment of a DC from bare
machines with a base OS distribution (Ubuntu) and storage (Ceph) and IaaS (OpenStack)
solutions with respective services (e.g., Neutron and Nova).

Specific versions of the distribution and the various services are configured in a
separate view as shown in Figure 6a. For example, a certain OS image is referenced
for the bare machine installation there. That is, the underscored name is a reference to
a definition of the image with metadata such as an Uniform Resource Locator [20,3]
(URL) and checksums.

In addition to the upstream projects, specific artifacts from downstream projects that
target specific operating systems or deployment technologies are recorded in another
view. For the Ceph and OpenStack services, Figure 6b shows versions of Debian packages
as found in the Ubuntu Cloud Archive [9] that relate to respective upstream projects
and versions. The DSL (editor) facilitates consistency between the versions of the up-
and downstream projects through validation and scoping while offering a selection of
existing matching packages in code completion.

Although these views exist, it is not compulsory to specify certain versions. That is,
it is possible to use default versions in a deployment. Yet, at a certain point in time it
is important to fix and freeze the set of versions of the various projects. Ensuring the
roll-out of defined software artifacts, this permits for reproducibility of deployments in
particular. In addition, it facilitates patch management in a production environment.

http://openstack.org

Upstream Project Versions
SongThrush @ MingDC9

Ubuntu 16.04.1 LTS (Xenial Xerus)

Ceph v10.2.0 (Jewel)

OpenStack 2016-04 (Mitaka)

Ceilometer "6.0.0"

Cinder "8.0.0"

Glance "12.0.0"

Heat "6.0.0"

Horizon "9.0.1"

Keystone "9.0.0"

Neutron "8.1.2"

Nova "13.0.0"

(a) Versions of IaaS Upstream Projects

Package Versions
SongThrush @ MingDC9

Ceph "10.2.0-0ubuntu0.16.04.2"

OpenStack

Ceilometer "1:6.0.0-0ubuntu1"

Cinder "2:8.0.0-0ubuntu1"

Glance "2:12.0.0-0ubuntu2"

Heat "1:6.0.0-0ubuntu1.1"

Horizon "2:9.0.1-0ubuntu2"

Keystone "2:9.0.0-0ubuntu1"

Neutron "2:8.1.2-0ubuntu1"

Nova "2:13.0.0-0ubuntu5"

(b) OS Packages of IaaS Solutions

Figure 6: Version Control – DSL Views

6.4 Code Generation

Together with the other views (e.g., an instance of the metamodel as shown in Figure 1)
and the default models all required information is complete for model transformation to
take place. The current prototype supports generation of a MAAS configuration and a
OpenStack JuJu bundle in form of YAML files. For the sublimated configuration using
default options and versions, the ratio between the size of MING models and YAML
code for MAAS and JuJu yielded 27%. That is, the models in MING are nearly four
times more compact than the corresponding code as generated by the templates.

6.5 Post-Deployment Adaptation Scenarios

As described, the MING approach provides a framework for describing the various as-
pects of DC deployments. Relying on existing deployment tools, this permits automation
from a modeling level. Beyond such deployment automation MING can help to facilitate
operational scenarios as well. For this, models relating to a deployment are modified by
DSL users and are analyzed in MING in a first step. This requires that the models are put
under version control, e.g., using Git [30], and are up to date, i.e., truthfully reflect the
DC deployment.

Based on the same MING metamodel, model differences between two model versions
are calculated using EMF Compare. In case the types of changes are supported for
automation, a respective adaptation process can be initiated. Besides, MING can help
experts to describe and learn about the change impact and best practices also including
other types of modifications. That is, documentation can be written for different types of

http://openstack.org
http://jujucharms.com
http://jujucharms.com
http://git-scm.com

modifications that will be looked up and presented to the experts. This way, MING can
be used to interactively try out modifications, learn or document knowledge related to
the changes, and, if available, trigger an adaptation process for enforcing the changes.

Scaling. One of the adaptation scenarios in a production environment relates to the
scaling of a DC as described in Section 2.4. For this new racks with new nodes are added
to an inventory model of the DC. There, nodes can be assigned a nodeType. Besides,
nodes can be dedicated to some aggregate.

DataCenter MingDC9

AvailabilityZone "az1"

Rack "r9"

Node "n8" type storage
NIC network ipmi id 23
NIC "01:02:03:04:05:06" network oam id 45
NIC "07:08:09:0a:0b:0c"
NIC "0d:0e:0f:10:11:12"
HDD 2 TB
HDD 2 TB
HDD 2 TB
HDD 2 TB
HDD 2 TB
SSD 512 GB

(a) Inventory

Aggregates for MingDC9

CephCluster "public"
"MingDC9.az1.r1.n3"
"MingDC9.az2.r2.n4"

Aggregate "EPA"
"MingDC9.az1.r1.n5"
"MingDC9.az2.r2.n6"

(b) Node Assignments

Figure 7: Inventory and Node Assignments (excerpts) – DSL Views

Figure 7a shows an example for an inventory DSL view of the MingDC9. A new rack
(r9) is added to one of the availability zones (az1). It contains a storage node (n8) with
a couple of NICs and disks. The DSL view in Figure 7b illustrates an example with
an excerpt referencing other nodes from the inventory model. It defines a Ceph cluster
(public) and an host aggregate (EPA) with two nodes respectively (n3, n4 and n5, n6).
These nodes are located in two racks (r1 and r2) in different availability zones (az1 and
az2). Part of the inventory, node n8 can now be added to the Ceph cluster public. That
is, a reference ("MingDC9.az1.r9.n8") can be added to the list. After having finished the
modifications, the DSL user may now start an adaptation analysis. For this, the model
differences (i.e., a new rack within the inventory and a new node in the Ceph cluster)
are identified based on the previous version of the MING views. Next, the user receives
previously documented information that describes the adaptation process that has been
automated and can be triggered. For enforcing the adaptation, the new node is installed
with an OS (see also Figures 5 and 6a), a Ceph service (see Figure 6b), and integrated
into the Ceph cluster.

Patch Management. Another use case is support for security patches and software
updates as pointed out in Section 2.3. For this, the responsible DSL views are related to
the version control of software projects and artifacts (see Figure 6). In the DSL editor
new available versions (e.g., Charms and/or (related) OS packages) can be highlighted
to the user for selection. For enforcing the changes, an adaptation process may possibly
rely on the (re)generation and deployment of a JuJu bundle if supported by the respective
Charms.

7 Discussion

The model-based approach enables the utilization of diverse technologies. In this work,
MAAS and JuJu constituted target technologies. For supporting other deployment tools,
the process described in the Sections 6.1 and 6.2 can be used. Given availability of
respective templates, this enables evaluation of different deployment tools. That is, from
the same models target code is generated for various deployment tools using respective
M2T transformations. This in turn fosters a common datamodel for establishing a
standard for configuring an IaaS deployment from bare machines. With the separation of
the models in distinct views further benefits can be leveraged:

Discovery of nodes and their components automatically yields a certain view. Creden-
tials as stored in another view are generated initially if not set for a certain deployment.
In both cases parts of the overall configuration are provided and the DSL user only needs
to focus on the other aspects of a deployment.

For a given DC it is possible to specify different deployments. That is, while the
physical setup (i.e., availability zones, racks, and nodes) as captured in one view does
not change, views related to the deployment such as the assignment of nodes or the
deployment and configuration of OpenStack services may be different. Yet, only a part of
the overall configuration is adapted and existing views can be reused avoiding software
clones. This way, deployments can be tested and the differences between them can be
described precisely by comparing two models.

In case a different DC shall be deployed similarly, it is possible to reuse views such
as the configuration of OpenStack services. This eases the deployment of multiple DCs
with a tested configuration.

The possibility to specify default configuration options in models permits custom
user-defined defaults. The fact that these are then applied on the views has two ma-
jor advantages: It simplifies the models by moving default configuration options out
of the views making the files more compact. Also, it simplifies code generation by
only processing the resulting model and makes it independent from any (user-defined)
defaults.

Regardless of the benefits of this model-based approach, it is always possible to
continue work with the output. Thus, MING does not introduce any dependency in regard
to the underlying automation.

Not all fine-grained configuration options of the bare machine provisioning or IaaS
solutions are reflected in the MING metamodel. Thus, in case these shall be lifted to
the modeling layer, the metamodel and the views need to be extended. In case multiple
technologies are supported using code generation, certain features of one technology

http://jujucharms.com
http://jujucharms.com
http://openstack.org
http://openstack.org

may not be supported by alternatives. For example, the deployment of IaaS services
may be realized using Kernel-based Virtual-Machine (KVM), Linux Containers (LXC),
or Docker. In case such a configuration option is specified but not supported by a
technology a fallback may be realized during code generation. For early feedback this
can be addressed through validators in the DSL. That is, when selecting an option that is
not supported by some technologies a warning is displayed in the DSL editor.

As pointed out in Section 5.2 adaptation actions can generally be derived from
inventory changes. The change impact of some other model differences needs to be
examined case by case. For this, respective actions can be identified, documented, and
implemented if possible. Although arduous, such an endeavor certainly is worthwhile
as it realizes operational support for different scenarios as described from a technology
agnostic modeling level. In this regard it should be pointed out that – even in production
– not all possible model changes need to be covered necessarily. In the course of an agile
development, different scenarios could be formulated as user stories and be part of a
prioritized (Scrum [46]) backlog.

There is a need to keep the models up to date. That is, changes that are performed
in a datacenter (hard- and software) also need to be reflected in the models. Ideally, the
models would be in sync with reality; furthermore, they would be causally connected.
That is, model changes would imply appropriate adaptations. For this, MING could be
extended with a dedicated models@runtime layer (cf. [6]).

In addition to deployment and adaptation the model-based framework could cover
monitoring aspects as well. This would further strengthen MING from an operational
point of view. Relating to, e.g., host aggregates that run low on resources (see also
Section 5.2) an adaptation process could automatically be triggered for balancing out
resources.

8 Conclusion

Gaining independence from existing deployment technologies MING establishes a meta-
model that serves as a technology agnostic datamodel for the configuration of IaaS
deployments in DCs from bare metal. The model-based approach integrates with avail-
able deployment tools and realizes SoC through view models backed by a textual DSL.
For facilitating operational aspects posterior to initial deployments, MING analyses
changes on a modeling level. It supports experts to both document and learn about
different types of adaptations and their change impact and can, if available, trigger an
appropriate process.

Acknowledgments. The author would like to thank the members of the extended
Infrastructure Cloud team, i.e., Alexandros Tsirepas, Andreas Flick, Axel Clauberg, Basil
Ahmed, Bernard Tsai, Daniel Brower, George Wu, Herbert Damker, Karsten Reincke,
Ken Jung, Matthias Britsch, Michael Linke, Michael Machado, Normen Kowalewski,
Patrick Münch, Rainer Schatzmayr, Robert Schwegler, Seth Chen, Stefan Schraub,
Steve Liu, Thomas Hillen, Thomas Oswald, Tobias Brausen, and Tomislav Sukser for
their dedicated endeavors making this work possible, valuable feedback, and helpful
comments.

http://docker.com

References

1. Alizadeh, M., Edsall, T.: On the Data Path Performance of Leaf-Spine Datacenter Fabrics. In:
IEEE 21st Annual Symposium on High-Performance Interconnects, HOTI 2013, Santa Clara,
CA, USA, August 21-23, 2013. pp. 71–74. IEEE Computer Society (2013)

2. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to Adapt Applications for the
Cloud Environment. Computing 95, 493–535 (2013)

3. Berners-Lee, T., Masinter, L., McCahill, M.: Uniform Resource Locators (URL) (Dec 1994),
http://ietf.org/rfc/rfc1738.txt, [accessed in September 2016]

4. Bernstein, D.: Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud
Computing 1(3), 81–84 (2014)

5. Bézivin, J.: On the unification power of models. Software and System Modeling 4(2), 171–188
(2005)

6. Blair, G.S., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer 42(10), 22–27
(2009)

7. Canonical, Ltd.: JuJu, http://jujucharms.com, [accessed in September 2016]
8. Canonical, Ltd.: MAAS: Metal as a Service, http://maas.io, [accessed in September 2016]
9. Canonical, Ltd.: Ubuntu Cloud Archive, https://wiki.ubuntu.com/OpenStack/

CloudArchive, [accessed in September 2016]
10. Cerf, V.G., Khan, R.E.: A protocol for packet network intercommunication. IEEE Transactions

on Communications 22, 637–648 (1974)
11. Chandrasekar, A., Gibson, G.: A comparative study of baremetal provisioning frame-

works. Tech. Rep. CMU-PDL-14-109, Parallel Data Lab, Carnegie Mellon University (Dec
2014), http://pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-14-109_abs.shtml, [ac-
cessed in September 2016]

12. Chef Software, Inc.: Chef, http://getchef.com, [accessed in September 2016]
13. DeHaan, M.: Cobbler, http://cobbler.github.io, [accessed in September 2016]
14. DeHaan, M.: Ansible (2012), http://ansible.com, [accessed in September 2016]
15. Dell, Inc.: Crowbar, http://crowbar.github.io, [accessed in September 2016]
16. Docker, Inc.: Docker (2013), http://docker.com, [accessed in September 2016]
17. Droms, R.: Dynamic Host Configuration Protocol. RFC 2131, The Internet Engineering Task

Force (Mar 1997), http://ietf.org/rfc/rfc2131.txt, [accessed in September 2016]
18. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns -

Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2014)
19. Gärtner, M., Lange, T., Rühmkorf, J.: The fully automatic installation of a Linux cluster.

Tech. Rep. 379, Computer Science Department, University of Cologne (Dec 1999), http://
e-archive.informatik.uni-koeln.de/id/eprint/379, [accessed in September 2016]

20. Hansen, T., Hardie, T., Masinter, L.: Guidelines and Registration Procedures for New URI
Schemes (Feb 2006), http://ietf.org/rfc/rfc4395.txt, [accessed in September 2016]

21. Hansson, D.H.: Ruby on Rails (2005), http://rubyonrails.org, [accessed in September
2016]

22. Holmes, T.: Facilitating Migration of Cloud Infrastructure Services: A Model-Based Approach.
In: Paige, R.F., Cabot, J., Brambilla, M., Hill, J.H. (eds.) Proceedings of the 3rd International
Workshop on Model-Driven Engineering on and for the Cloud 18th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2015), Ottawa, Canada,
September 29, 2015. CEUR Workshop Proceedings, vol. 1563, pp. 7–12. CEUR-WS.org
(2015)

23. Holmes, T.: Sublimated Configuration of Infrastructure as a Service Deployments — MING:
A Model- and View-Based Approach for Cloud Datacenters. In: Cardoso, J., Ferguson, D.,
Muñoz, V.M., Helfert, M. (eds.) 6th International Conference on Cloud Computing and
Services Science. vol. 2, pp. 308–313. SciTePress (2016)

http://ietf.org/rfc/rfc1738.txt
http://jujucharms.com
http://maas.io
https://wiki.ubuntu.com/OpenStack/CloudArchive
https://wiki.ubuntu.com/OpenStack/CloudArchive
http://pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-14-109_abs.shtml
http://getchef.com
http://cobbler.github.io
http://ansible.com
http://crowbar.github.io
http://docker.com
http://ietf.org/rfc/rfc2131.txt
http://e-archive.informatik.uni-koeln.de/id/eprint/379
http://e-archive.informatik.uni-koeln.de/id/eprint/379
http://ietf.org/rfc/rfc4395.txt
http://rubyonrails.org

24. Intel Corporation: Preboot Execution Environment (PXE) Specification Version
2.1 (Sep 1999), http://download.intel.com/design/archives/wfm/downloads/
pxespec.pdf, [accessed in September 2016]

25. Intel Corporation, Hewlett-Packard Company, NEC Corporation, Dell Inc.:
Intelligent Platform Management Interface Specification v2.0 rev. 1.1 (Oct
2013), https://www-ssl.intel.com/content/www/us/en/servers/ipmi/
ipmi-second-gen-interface-spec-v2-rev1-1.html, [accessed in September 2016]

26. International Organization for Standardization: ISO/IEC 42010:2011 Systems and software
engineering – Architecture description (Dec 2011), http://iso.org/iso/catalogue_
detail.htm?csnumber=50508, [accessed in September 2016]

27. Kelly, P., Levy, O.: Foreman (2009), http://theforeman.org, [accessed in September
2016]

28. Lange, T.: Fully Automatic Installation (2000), http://fai-project.org, [accessed in
September 2016]

29. Lange, T.: 10 Jahre FAI Projekt. Tech. Rep. 603, Computer Science Department, University
of Cologne (Jul 2010), http://e-archive.informatik.uni-koeln.de/id/eprint/603,
[accessed in September 2016]

30. Linus Torvalds: Git (Apr 2005), http://git-scm.com, [accessed in September 2016]
31. Maggiani, R.: Cloud computing is changing how we communicate. International Professional

Communication Conference 0, 1–4 (2009)
32. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.M., Peterson, L.L., Rexford, J.,

Shenker, S., Turner, J.S.: Openflow: enabling innovation in campus networks. Computer
Communication Review 38(2), 69–74 (2008)

33. Mell, P.M., Grance, T.: The NIST Definition of Cloud Computing. Tech. Rep. SP 800-145,
National Institute of Standards & Technology (2011)

34. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electr. Notes Theor. Comput. Sci.
152, 125–142 (2006)

35. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37(4), 316–344 (2005)

36. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1 (Jun 2003), http://omg.org/cgi-bin/
doc?omg/03-06-01, [accessed in September 2016]

37. OpenStack Foundation: Compass, http://syscompass.org, [accessed in September 2016]
38. OpenStack Foundation: Fuel, http://wiki.openstack.org/Fuel, [accessed in September

2016]
39. OpenStack Foundation: OpenStack Bare Metal Provisioning (Ironic), http://wiki.

openstack.org/Ironic, [accessed in September 2016]
40. OpenStack Foundation: OpenStack on OpenStack (TripleO), http://wiki.openstack.

org/TripleO, [accessed in September 2016]
41. OpenStack Foundation: Packstack, http://wiki.openstack.org/Packstack, [accessed

in September 2016]
42. OpenStack Foundation: OpenStack (Jul 2010), http://openstack.org, [accessed in

September 2016]
43. Puppet Labs, LLC: Puppet, http://puppetlabs.com, [accessed in September 2016]
44. Red Hat, Inc.: Kickstart (2011), http://github.com/rhinstaller/pykickstart, [ac-

cessed in September 2016]
45. Red Hat, Inc.: RPM Distribution of OpenStack (RDO) (2013), http://rdoproject.org,

[accessed in September 2016]
46. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1st edn. (2001)
47. Software in the Public Interest, Inc.: Debian (1993), http://debian.org, [accessed in

September 2016]

http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf
http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf
https://www-ssl.intel.com/content/www/us/en/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www-ssl.intel.com/content/www/us/en/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
http://iso.org/iso/catalogue_detail.htm?csnumber=50508
http://iso.org/iso/catalogue_detail.htm?csnumber=50508
http://theforeman.org
http://fai-project.org
http://e-archive.informatik.uni-koeln.de/id/eprint/603
http://git-scm.com
http://omg.org/cgi-bin/doc?omg/03-06-01
http://omg.org/cgi-bin/doc?omg/03-06-01
http://syscompass.org
http://wiki.openstack.org/Fuel
http://wiki.openstack.org/Ironic
http://wiki.openstack.org/Ironic
http://wiki.openstack.org/TripleO
http://wiki.openstack.org/TripleO
http://wiki.openstack.org/Packstack
http://openstack.org
http://puppetlabs.com
http://github.com/rhinstaller/pykickstart
http://rdoproject.org
http://debian.org

48. Sollins, K.R.: The TFTP Protocol (Revision 2). RFC 1350, The Internet Engineering Task
Force (Jul 1992), http://ietf.org/rfc/rfc1350.txt, [accessed in September 2016]

49. The Apache Software Foundation: Hadoop (2011), http://hadoop.apache.org, [accessed
in September 2016]

50. The CentOS Project: CentOS (2004), http://centos.org, [accessed in September 2016]
51. The Eclipse Foundation: Eclipse Modeling Framework Project (EMF) (2002), http://

eclipse.org/modeling/emf, [accessed in September 2016]
52. The Eclipse Foundation: EMF Compare (Oct 2006), http://wiki.eclipse.org/EMF_

Compare, [accessed in September 2016]
53. The Eclipse Foundation: Xtext (2006), http://eclipse.org/Xtext, [accessed in Septem-

ber 2016]
54. The Eclipse Foundation: Xtend (Jun 2011), http://eclipse.org/xtend, [accessed in

September 2016]
55. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,

Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013)

56. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: A scalable, high-
performance distributed file system. In: Bershad, B.N., Mogul, J.C. (eds.) 7th Symposium on
Operating Systems Design and Implementation. pp. 307–320. USENIX Association (2006)

57. Wettinger, J., Breitenbücher, U., Leymann, F.: Standards-Based DevOps Automation and
Integration Using TOSCA. In: 7th IEEE/ACM International Conference on Utility and Cloud
Computing. pp. 59–68. IEEE (2014)

58. Zimmermann, H.: OSI Reference Model–The ISO Model of Architecture for Open Systems
Interconnection. IEEE Transactions on Communications 28(4), 425–432 (Apr 1980)

http://ietf.org/rfc/rfc1350.txt
http://hadoop.apache.org
http://centos.org
http://eclipse.org/modeling/emf
http://eclipse.org/modeling/emf
http://wiki.eclipse.org/EMF_Compare
http://wiki.eclipse.org/EMF_Compare
http://eclipse.org/Xtext
http://eclipse.org/xtend

	Ming: Model- and View-Based Deployment and Adaptation of Cloud Datacenters
	1 Introduction
	2 Automated Datacenter Deployment
	2.1 Structure of Datacenters
	2.2 Software Installation
	2.3 Software Projects, Artifacts, and Version Control
	2.4 Datacenter Scaling

	3 State of the Art
	3.1 Bare Machine Installation
	3.2 OpenStack Installation
	3.3 Positioning and Contribution of Ming

	4 Background on Model-Based Engineering
	4.1 Domain-Specific Languages
	4.2 View Models

	5 Approach: Abstracting from Technologies
	5.1 Establishing Models through Abstraction
	5.2 Model-Based Adaptation

	6 The Ming Prototype
	6.1 Initial Engineering
	6.2 Continuous Improvements
	6.3 Example Configuration and Version Control
	6.4 Code Generation
	6.5 Post-Deployment Adaptation Scenarios

	7 Discussion
	8 Conclusion

