
Facilitating Migration of Cloud Infrastructure
Services — A Model-Based Approach

Ta’id Holmes
Infrastructure Cloud, Deutsche Telekom Technik GmbH

Darmstadt, Germany
t.holmes@telekom.de

Abstract—In cloud computing, modeling can be used to specify
service topologies. Following a model-driven approach provision-
ing can be automated resulting in a significant reduction of time
and costs. Yet, a forward engineering approach is limited to initial
setups. That is, changes introduced posterior to a generation
are not addressed per se when a complete regeneration is to be
avoided. For dealing with differential changes of infrastructure
service models, a model-based round-trip engineering approach
is proposed that combines the power of model-driven generation
with runtime reflection. For this, a de facto runtime model is
reverse-engineered and model differences are calculated and
operated on for enforcing a de jure model. While showcasing
how to evolve a forward engineering approach accordingly, a
particular implication of this contribution is the possibility to
facilitate migration of cloud infrastructure services.

Index Terms—cloud service, IaaS, migration, model-based,
model difference, OpenStack, provisioning, service topology

I. INTRODUCTION

Model-driven engineering (MDE) enables stakeholders to
directly participate in engineering processes by relating to
constructive models that abstract from technologies. In the
context of cloud computing, service topologies for cloud-
based solutions are modeled by architects. For instance, a
Web application may comprise a load balancer, web servers,
application servers, and a database system. Using modeling
techniques, the comprised services such as the infrastructure
services are specified in terms of computing power, memory,
storage, network, and security rules (cf. [1]).

The provisioning of cloud services in terms of infrastructure
is realized by one or multiple infrastructure as a service (IaaS)
providers. By applying a model-driven approach provisioning
can be automated (cf. [2]). Not only does modeling permit to
directly incorporate architects, also the resulting saving of time
is significant. Yet, a forward engineering approach is limited
to initial setups. That is, a change to a service topology that
shall be conducted posterior to an initial provisioning generally
would require a complete regeneration.

For example, a cloud architect could decide to add another
server instance such as a virtual private network (VPN) gateway
to the service topology of the solution. This would not affect
already provisioned cloud services, but require the instantiation
of a new virtual machine and the deployment of particular
security rules associated with the VPN service. Given a forward
engineering approach it is only intended to provision an entire
service topology. In this case, however, it would be more

desirable to only consider the changes to the original model
and perform required actions. In other cases it might be
more constructive to compare a model describing the target
configuration against reality.

For overcoming limitations of forward-engineering and for
considering existing infrastructure services a model-based
round-trip engineering approach is proposed showcasing how
a former approach can be evolved accordingly. It incorporates
runtime reflection for applying differential changes to an
existing service topology. Comparing two models, such as a
target de jure model with a current de facto runtime model, the
work can be applied for enforcing conformance. Moreover, it
can facilitate alignment and migration of infrastructure services
between cloud deployments.

This paper is structured as follows: The approach is depicted
in Section II and Section III describes technical implementation
details. Different types of application scenarios – in particular
service alignment and migration – are explained in Section IV.
Experiences from a case study are presented in Section V
followed by a discussion in Section VI. Finally, Section VII
compares to related work and Section VIII concludes.

II. FROM A MODEL-DRIVEN FORWARD ENGINEERING TO A
MODEL-BASED ROUND-TRIP ENGINEERING APPROACH

For the provisioning of cloud infrastructure services, a
model-driven approach can be followed as proposed in [3]
using textual domain-specific languages (DSLs). For this,
a metamodel comprises IaaS concepts and provisioning is
realized through model transformations. As such an approach
is limited to forward engineering as outlined in the introduction,
the model-based round-trip engineering approach is presented
in this section as a superior alternative that does not only
incorporate models from design time but also runtime models
through runtime reflection.

Figure 1 gives an overview of the round-trip engineering
approach. Initially, an architect specifies a cloud infrastructure
service topology in terms of a de jure model. It is compared
with another model originating from the runtime. For generating
such a de facto model, a reflection service interacts with the
interfaces of the IaaS provider. From the two IaaS models a
model comprising model differences (referred to in this paper as
a diff-model) is calculated which is processed by the execution
engine. Based on the differences and depending on the kind of
difference, the affected model element, and its content a model

http://t.holmes.info/research
http://telekom.com


IaaS 

Consumer 

IaaS 

Provider 

Execution 

Engine 

Model-Diff 

Calculator 

generates 

generates 

Diff-

Model 

de facto 

Model 

produces 

de jure 

Model 

invokes 

processes 

Runtime 

Model 

consumes 

Design 

Model 

invokes 

IaaS 

Consumer 

Reflection 

Service 

Process 

Engine 

initiates 

process 
invokes 

Human 

Task 

invokes 

reviews and 

approves 

actions 

specifies 

service topology 

IaaS 

Metamodel 

conforms to 

Figure 1. Overview of the Model-Based Round-Trip Engineering Approach

transformation takes place. Appropriate IaaS consumers are
generated that – when executed – enforce the de jure model.
An auxiliary generated business process helps to orchestrate
these. In case differences are discovered that shall be subject to
a review – e.g., when provisioned services are to be terminated
– the business process also involves a human task.

III. TECHNICAL REALIZATION

In this section, some technical details regarding the proto-
typical implementation are explained. Eclipse Xtext (Xtext) 1

was used to define a metamodel using a textual grammar.
Diff-models are calculated using EMF Compare 2. For model
transformation, realizing the execution engine, Eclipse Xtend
(Xtend) 3 was used. OpenStack 4 served as an IaaS solution.

A. IaaS Metamodel

Figure 2 depicts a metamodel comprising concepts from
OpenStack Compute (Nova), a pendant to Amazon Elastic
Compute Cloud (EC2) 5. An IaaS project represents a
tenant comprising cloud infrastructure services such as server
instances, volumes, and security groups. Firewall rules
(FWRules) translate to EC2 security rules and specify permitted
protocols and/or open ports.

Models conforming to this metamodel were directly trans-
formed to IaaS consumers in the forward engineering approach
(cf. [3]). While they originated from the design time, the novel
model-based round-trip engineering approach also considers
models derived from the runtime. Thus, the metamodel both
serves for expressing and for capturing IaaS concepts. For
this, the metamodel was enriched with a few runtime concepts

1http://eclipse.org/Xtext
2http://wiki.eclipse.org/EMF Compare
3http://eclipse.org/xtend
4http://openstack.org
5http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf

Figure 2. A Common Metamodel for Expressing and Capturing IaaS Concepts

such as assigned Internet Protocol (IP) addresses and different
states. As a result, the Server and Volume classes have been
extended with additional attributes (e.g., ips, status, and
powerState). In the context of this work, the single purpose
of the metamodel remains focused on driving the provisioning.

B. Reverse-Engineering a Runtime Model

The reflection service, as required for evolving the forward
engineering approach, was realized as a representational state
transfer (REST) service. Associated with a deployed IaaS
solution, it consumes a tenant identifier and returns a de facto
model reflecting the current provisioned cloud infrastructure
services of the tenant. As mentioned, such a model conforms
to the same metamodel as used for design time.

The service invokes the IaaS provider’s application program-
ming interfaces (APIs) for performing the runtime reflection.
Programmatically, first, a token is retrieved after an initial
authentication that is used in subsequent requests. Next, a list
of security groups is requested. For each of the security groups,
the security rules are requested then. Next, a list of server
instances is retrieved. Iterating over all the instances, the various
associated properties are looked up such as the image, the flavor,
the assigned security groups, the security key, and associated IP
addresses. Finally, volumes and associated instances are looked
up before the token is invalidated. Meanwhile, the model is
populated with the obtained information. Finally, the de facto
model is returned to the caller.

http://eclipse.org/Xtext
http://eclipse.org/xtend
http://openstack.org
http://nova.openstack.org
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf
http://eclipse.org/Xtext
http://wiki.eclipse.org/EMF_Compare
http://eclipse.org/xtend
http://openstack.org
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf
http://ietf.org/rfc/rfc791.txt


Table I
MODEL TRANSFORMATION EXAMPLES: RELATING MODEL DIFFERENCES TO IAAS API CALLS

Model Element API Kind REST Operation (simplified paths by omitting version) Description
IaaSProject.members Keystone addition POST users creates a new user

PUT tenants/{tenantId}/users/{userId}/roles/OS-KSADM/{roleId} associates a user using a role
Member.publicKey Keystone addition POST keypairs sets/updates publicKey of a user
IaaSProject.groups Nova addition POST {tenant id}/os-security-groups creates a new security group
IaaSProject.servers Nova addition POST {tenant id}/servers creates a new server instance

deletion DELETE {tenant id}/servers/{server id} terminates a server instance
IaaSProject.volumes Nova addition POST {tenant id}/os-volumes creates a new volume
Server.devs Nova addition POST {tenant id}/servers/{server id}/os-volume attachments attaches a volume to a server
Server.ips Nova addition POST os-floating-ips allocates a floating IP

POST {tenant id}/servers/{server id}/action assigns a floating IP
deletion DELETE os-floating-ips/{id} deallocates a floating IP

POST {tenant id}/os-fixed-ips/{fixed ip}/action releases a floating IP

C. Calculating a Diff-Model

From two models (e.g., one model specified by an architect
and one model generated by the reflection service as outlined
in the previous section) a diff-model is calculated describing
the discrepancy between a de jure and a de facto model. For
calculating a diff-model a two-way comparison is performed
using EMF Compare with the matching strategy being based
on the object content ignoring identifiers. A resulting kind
of difference categorizes as an addition, a deletion, a change,
or a move. Former differences that merely depict extensions
to the service topology can be resolved by provisioning the
additional cloud services. Other differences may require review
and approval prior to application. For this reason, different
IaaS consumers are generated containing the respective service
calls as described next.

D. Model Transformation

Next, the calculated diff-model is processed by the ex-
ecution engine. Depending on the kind of difference and
the concerned model element respective IaaS API calls are
generated. Note that the IaaS metamodel is closely related
to IaaS APIs (i.e., OpenStack Identity Service (Keystone)
and Nova). For this reason transformation rules can easily
be expressed programmatically by MDE developers. Similarly
to the forward engineering approach, Xtend extension methods
have been implemented in the round-trip engineering approach:
Besides the object (e.g., Server) also the container (e.g.,
IaaSProject) and the name (e.g., servers) of the model
element are taken as parameters into account as well as the
kind of difference (e.g., addition). This way, it is similarly
possible to generate respective actions although a diff-model
is processed. Evolving a forward engineering approach, thus,
requires respective adaptation of the execution engine.

Table I displays some examples of how various differences
are related to IaaS API calls and considered by the model
transformation. For example, in case the diff-model contains
an addition of a server instance (IaaSProject.servers),
a REST consumer is generated that when executed calls the
POST operation {tenant_id}/servers. While the Uniform
Resource Locator contains a path parameter for the tenant
identifier other data has to be passed in the body using the

JavaScript Object Notation such as a reference to the desired
image or the to be associated security groups. If a difference
does not comprise all required information for code generation,
additional sources (e.g., a list of not yet considered differences)
need to be consulted by transformation rules that are thus
accessible within an instance of the execution engine.

Although the levels of abstraction between different elements
of the metamodel and API operations are often alike, this is
not always the case. Therefore some differences do not result
in a direct mapping. That is, sometimes multiple actions have
to be generated for a calculated difference. For instance, a
user may have to be created prior to assigning her to a tenant.
Also, for assigning a floating IP it may first be necessary to
allocate a floating IP from a pool that in a second step can
be assigned to a server instance. Such a technical detail is
abstracted from in the metamodel and therefore has to be
incorporated during code generation. Another cause that may
complicate implementation of a model transformation is the
design of the target language, i.e., the OpenStack APIs in this
work. While most REST operations are similar between the
kinds of difference, there are exceptions to a potential naming
convention. For instance, not all operations that are related to
deletions use the Hypertext Transfer Protocol option DELETE:
For releasing a floating IP a POST request has to be issued and
the keyword unreserve has to be passed in the body.

Processing order is crucial because of composition relation-
ships. For example, if a difference consists of an existing server
instance referencing a new volume group (another difference),
the volume group has to be created first and can then be attached
to the server instance. Contrary, if the volume group is to be
deleted again it has to be detached from the server instance
first and can then be terminated. Thus, the algorithm needs
to apply differences respectively in order, e.g., by traversing
the metamodel, by following composition relationships, and
by applying matching differences only once.

Finally, differences that do not categorize as additions or
deletions may be transcribed or may need to be handled
accordingly. Sometimes there is no disparity in state if a
difference such as a change or a move is realized using a
deletion and addition in which case these operations of the
API can be resorted. If this is not the case the respective

http://keystone.openstack.org
http://ietf.org/rfc/rfc4627.txt
http://openstack.org
http://ietf.org/rfc/rfc2616.txt


API needs to support these kinds of difference by providing
additional operations to the minimum set.

The generated actions (i.e., API calls) are aggregated in two
IaaS consumers: non-critical alignments, i.e., actions resulting
from additions, are placed in the first consumer. Actions
originating from other differences that require review are stored
in a different consumer. In addition, a business process is
generated for their orchestration and for incorporating a human
review.

E. Model-Based Enforcement
Once the execution engine has processed the diff-model the

auxiliary business process is initialized that invokes the con-
sumer comprising the non-critical alignments. In case of critical
alignments, e.g., differences that result in the termination of
infrastructure services, a review is to be undertaken. For this
the generated business process contains approval tasks relating
to the critical differences. When approved the respective IaaS
consumer is invoked by the business process.

IV. APPLICATION SCENARIOS

In this section the applicability of the approach is illustrated
by discussing different types of scenarios. That is, for all of
the scenarios the same approach is applied as presented in
Section II using a de jure and a de facto model for determining
respective provisioning actions.

A. Initial Provisioning of Infrastructure Services
Given a model describing a cloud infrastructure service

topology, how can these services be provisioned?
The first type of usage scenario equals simply to what has

been covered by the functionality of the forward engineering
approach. That is, from a service topology, infrastructure
services are to be provisioned in a greenfield scenario. As
no cloud infrastructure services are existing in the respective
tenant, the reflection service yields an empty de facto model.
This is compared against the user supplied de jure model
comprising the to be provisioned infrastructure services. As a
consequence, the diff-model comprises additions only. Each
addition is transformed by the execution engine into code that
realizes the provisioning of the respective service. Thus, in
contrast to the forward engineering approach the execution
engine of the round-trip engineering approach processes a
diff-model. In both approaches, a complete IaaS consumer
for provisioning all of the services is generated using model
transformation: By comparing a model against an empty model,
the round-trip engineering approach yields the same actions
as the forward engineering approach that processes the model.
In fact, an IaaS consumer that results from transforming the
diff-model instantiates all the infrastructure services as present
in the model. As a consequence, the IaaS consumers generated
by the different approaches are equal in terms of their behavior.

This way, functionality of the forward engineering approach
is covered and as required by this scenario. In the following
some further application scenarios are described proving the
round-trip engineering approach to be a superior alternative to
the formerly presented forward engineering approach.

B. Design Time Modification and Runtime Adaptation

Given previously provisioned cloud infrastructure services in
a tenant, how can changes to an original model be propagated
and be enforced for adopting the respective tenant?

The second type of usage scenario derives from the initial
motivation described in the introduction. In this scenario an
initial provisioning as previously described has taken place.
The original model was modified then. Instead of rebuilding
the entire service topology from scratch, changes are identified
first and applied to the existing IaaS provider.

While in this scenario it would be possible to compare two
models from design time, i.e., a revised version with an original
describing the current topology in terms of infrastructure
services the latter model is reverse-engineered using a reflection
service. A reason for this is that the resulting model effectively
constitutes a de facto model for the given point in time. If
the former version of a model is to be used as the basis
for comparison it would require that it reflects reality and
that no changes must be undertaken apart from the model.
Relying on the reflection service, this restriction is not necessary.
Indeed, services can manually be provisioned without the risk
to jeopardize the round-trip engineering approach.

Thus, in this scenario the de jure model is a revised version
of a model and the de facto model is obtained using the
reflection service. As in the previous scenario, the differences
may only comprise additions. In this case they are applied
directly. However it is also possible that differences are of
other types. In such cases a review is scheduled.

C. Alignment of Cloud Infrastructure Services

Given two different cloud tenants, how can the cloud
infrastructure services be aligned between them so that one
tenant comprises the same infrastructure services as the other?

With the approach it is equally possible to compare two
runtime models, e.g., for aligning provisioned cloud infras-
tructure services of two tenants in different clouds. For this
the respective reflection services yield corresponding models.
According to what model is elected as the de jure model
the tenant of the other model is aligned subsequently. This
scenario is similar to the previously described scenario in a
sense that the diff-model may contain any kind of difference
(i.e., not only additions as in the initial provisioning) and that
the model transformation is alike. In fact, the only distinction
is the selection of two runtime models. When comparing two
tenants using the reflection service with the target being empty,
all cloud infrastructure services from the source tenant will be
provisioned at the target tenant. This is exploited for facilitating
the migration of infrastructure services as described next.

D. Facilitating Migration of Infrastructure Services

Given two IaaS deployments, how can the infrastructure
services from one cloud be migrated to the other?

By realizing the alignment of cloud infrastructure services
as previously described, migration can be facilitated. First, the
tenants are created at the new deployment. Next, they need to
be migrated. For this, two runtime models are compared; one



originating from the source cloud comprising the provisioned
services to be migrated and one empty model from the target.
Next, the execution engine aligns the target with the source
for facilitating the migration of the cloud services. Finally,
the original cloud services are terminated once the migration
has been affirmed. While this does not realize yet complete
migration of cloud services (e.g., the data stored in volumes
which is not in scope of this paper), it does automate some
basic steps and as a consequence facilitates migration of cloud
infrastructure services. After the alignment of the infrastructure
services has taken place, the business process schedules a task
for manually completing and verifying the migration. When the
migration is affirmed to have succeeded the IaaS consumer is
invoked for terminating the original cloud services completing
the migration.

V. EXPERIENCES FROM A CASE STUDY

In a case study, a migration from OpenStack 2012.1 (Essex)
to OpenStack 2013.2 (Havana) was attempted. For this, the
setup and procedure as described in the previous paragraph was
chosen. That is, two OpenStack deployments were available
in parallel, with one constituting the target cloud. While
the reflection service operated on the former version, the
execution engine generated IaaS consumers for the later version.
While realizing a proof of concept, the prototype was not
deployed to undertake a factual migration of real IaaS tenants
as further problems need to be addressed such as how to migrate
(assigned) floating IP addresses. Also the migration of data,
e.g., in volumes, was not yet tackled. Finally, the monitoring
and reporting of the overall migration has to be worked out.

As some code in the reflection service and the execution
engine is specific – not only to the IaaS solution but also
IaaS version – dedicated plugins hold respective parts. In fact,
when conducting the case study with these two OpenStack
deployments an incompatibility of APIs was detected. While
libraries and projects (e.g., DeltaCloud 6) exist that try to
abstract and unify various IaaS interfaces there is no established
standard for IaaS provider services adequately implemented
by IaaS solutions. EC2, widely adopted in industry, could be
a candidate, but because of some limitations and convenience
(e.g., names of server instances) the (OpenStack native)
Nova API was chosen. During prototyping it was discovered,
however, that between these two versions the API underwent
some changes that required adaptation of the code. With the
possibility to provide plugins for each specific IaaS (version)
the prototype is extensible and adaptable. This way, further
IaaS solutions can be supported for applying the approach.

VI. DISCUSSION

In contrast to a naı̈ve model-driven, and forward-only
approach, the presented model-based round-trip engineering
approach enables alignment of existing cloud infrastructure ser-
vices. Incorporating runtime reflection for reverse-engineering
a runtime model of infrastructure services the approach paves
the way for facilitating their migration.

6http://deltacloud.apache.org

A. Comparing Forward and Round-Trip Approaches

In both approaches the same metamodel is used for express-
ing and for capturing concepts from IaaS provisioning (see
Figure 2). In addition to an IaaS metamodel the round-trip
engineering approach relies on a diff-metamodel. The diff-
metamodel provides the means to describe changes between
(any) two models that conform to the same metamodel. In
particular it comprises addition and deletion of model elements
as concepts. This diff-metamodel does not need to contain
domain specific concepts but can be a generic metamodel.
That is, for any metamodel it can describe changes between
conforming models (cf. [4]). If a generic metamodel is used
the execution engine needs to consider the domain specific
type of an affected model element in addition to the (generic)
kind of change for deriving appropriate actions.

Although the same IaaS APIs can be used in both approaches,
the forward engineering approach does not perform runtime
reflection as in case of the round-trip engineering approach.
For this reason the models used in the forward engineering
approach are limited to design time models whereas the round-
trip engineering approach also incorporates reverse engineered
runtime models. In contrast to the forward engineering ap-
proach, the execution engine of the round-trip engineering
approach does not operate on a model conforming to the IaaS
metamodel. Instead, a diff-model is processed. Both approaches
can be used for an initial provisioning. In addition, the round-
trip engineering approach is able to apply incremental changes
posterior. Finally, the forward engineering approach operates
on a single cloud whereas the round-trip engineering approach
can be applied in a multi-cloud deployment, i.e., to compare,
align, and migrate infrastructure services between two clouds.

B. Round-Trip Engineering Approach

The generated de facto model is not only useful for (partial)
provisioning (e.g., in an iterative practice) but potentially also
valuable to stakeholders for representation purposes (cf. model-
based reporting [5]). Moreover a design time model can be
validated against runtime by calculating mismatches. Such
results can be fed into monitoring for alerting.

Note that certain adaptation scenarios can already be
achieved by providing only some transformation rules. For
example, if the diff-model contains only an addition of a new
server, it suffices to call the transformation rule for generating
the respective Nova API operation as shown in Table I. Thus,
not all kinds of differences need to be supported for covering a
wide range of adaptation scenarios. Yet, for the transformation
to be complete and fully automated any model element of
the metamodel must be mapped depending on the kind of
difference to appropriate API calls.

As mentioned, the work serves as a first step towards the
migration of cloud services. For completely migrating cloud
infrastructure services further work has to be carried out. For
example, there are remaining challenges such as how to migrate
(assigned) floating IP addresses.

http://openstack.org
http://openstack.org
http://openstack.org
http://deltacloud.apache.org


VII. RELATED WORK

In this section this work is compared and related to other
work, approaches, and efforts from academia and industry. First,
the topic of model differences is discussed briefly. Next, some
related work on runtime models and model-based adaptation
is presented. Finally, the cloud computing context is looked at.

Cicchetti et al. [4] present a metamodel independent approach
for describing model differences. In the realization of this work
this is applied using the diff-metamodel from EMF Compare.
Langer et al. [6] present a contribution that permits to identify
composite operations of a revised model such as refactorings.
Equally building on EMF technology and utilizing the EMF
Compare project the article also gives a well explained and very
detailed background on diff-models, their use and metamodel.
For the migration of infrastructure services no composite
operations need to be considered but when alignment between
two cloud deployments is to be retained it could be beneficial
to identify composite changes and apply them as such.

The idea of comparing a target model against reality as
applied in this work is the base of many studies. Bencomo et
al. [7] evaluate runtime systems against valid states restricted by
requirements. Building on the idea of models@run.time (cf. [8])
Ferry et al. [2] propose a framework based on CloudML 7 for
the provisioning, deployment, monitoring, and adaptation of
multi-cloud systems. Although related in various aspects, it does
not address migration of cloud (infrastructure) services which
is the focus of this work. It presumes a causal connected system
whereas this work showcases how to introduce runtime models,
e.g., when moving from a forward to a round-trip engineering
approach. Further distinctions are the reverse engineering of
runtime models, the differentiation of adaptations, and the
integration of human reviews. Last but not least, the approach
presented for calculating and processing a diff-model is agnostic
to the metamodel. In contrast CloudML manually implemented
specific comparisons related to its metamodel and could thus
profit from utilizing a library such as EMF Compare.

The OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) standard 8 is not limited to
infrastructure services but covers the complete service stack
and management of cloud applications (cf. [9]). Aiming at
portability, current advancements are driven by design models
and there is currently no work that permits to analyze a system
and reverse-engineer a model. Although this work was realized
using a EC2 metamodel, the TOSCA metamodel can be used
equally for expressing and capturing infrastructure services.

CloudFormation 9 and the OpenStack Orchestration (Heat) 10

pendant permit to describe setups in a file based manner. While
not at a modeling level these technologies can be used to
provision services in different cloud regions. Also, reverse
engineering may be possible, yet, the comparison and resolution
for aligning infrastructure services is not addressed.

7http://cloudml.org
8http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
9http://aws.amazon.com/cloudformation
10http://docs.openstack.org/developer/heat/

Besides, there are a couple of related metamodels and
DSLs (e.g., CloudML see above) targeting cloud applications:
Bergmayr et al. [10], e.g., present an UML-based approach
for the modeling of cloud applications. It is believed that a
particular metamodel such as the one presented in Figure 2
is not pivotal to the approach. It must comprise or permit
to express IaaS concepts though. In case the metamodel is
to be substituted (e.g., for adopting TOSCA), the reflection
service and the execution engine have to be adapted. If a certain
technology shall be used not only for the metamodel but also
within model transformation this would require the expression
of incremental changes using the technology and that such
increments may be applied posteriori to an initial deployment.

VIII. CONCLUSION

The migration of cloud infrastructure services between IaaS
deployments can be facilitated using a model-based round-trip
engineering approach combining generation techniques with
runtime reflection. By realizing this, this paper showcased how
a model-driven forward engineering approach can be evolved
to a round-trip engineering approach by enriching a metamodel
with runtime aspects, by establishing a reflection service, and
by basing the model transformation on processing a diff-model.

ACKNOWLEDGMENTS
The author would like to thank peers cordially for valuable feedback,

communicative exchange, and for kindly providing information of avail.

REFERENCES

[1] E. Wittern, A. Lenk, S. Bartenbach, and T. Braeuer, “Feature-Based
Configuration of Vendor-Independent Deployments on IaaS,” in 18th
IEEE International Enterprise Distributed Object Computing Conference,
M. Reichert, S. Rinderle-Ma, and G. Grossmann, Eds. IEEE, 2014, pp.
128–135.

[2] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “CloudMF:
Applying MDE to Tame the Complexity of Managing Multi-cloud
Applications,” in IEEE/ACM 7th International Conference on Utility
and Cloud Computing (UCC). IEEE, Dec 2014, pp. 269–277.

[3] T. Holmes, “Automated Provisioning of Customized Cloud Service Stacks
using Domain-Specific Languages,” in 2nd International Workshop on
Model-Driven Engineering on and for the Cloud, vol. 1242. CEUR-
WS.org, Sep. 2014, pp. 46–55.

[4] A. Cicchetti, D. D. Ruscio, and A. Pierantonio, “A metamodel indepen-
dent approach to difference representation,” Journal of Object Technology,
vol. 6, no. 9, pp. 165–185, 2007.

[5] T. Holmes, “From Business Application Execution to Design through
Model-Based Reporting,” in 16th IEEE International Enterprise Dis-
tributed Object Computing Conference, C.-H. Chi, D. Gasevic, and W.-J.
van den Heuvel, Eds. IEEE, Sep. 2012, pp. 143–153.

[6] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdörfer, M. Seidl,
K. Wieland, and G. Kappel, “A posteriori operation detection in evolving
software models,” Journal of Systems and Software, vol. 86, no. 2, pp.
551–566, 2013.

[7] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier,
“Requirements reflection: requirements as runtime entities,” in ICSE
(2), J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, Eds. ACM,
2010, pp. 199–202.

[8] G. S. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[9] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable
Automated Deployment and Management of Cloud Applications,” in
Advanced Web Services, A. Bouguettaya, Q. Z. Sheng, and F. Daniel,
Eds. Springer, 2014, pp. 527–549.

[10] A. Bergmayr, J. Troya, P. Neubauer, M. Wimmer, and G. Kappel, “UML-
based cloud application modeling with libraries, profiles, and templates,”
in 2nd International Workshop on Model-Driven Engineering on and for
the Cloud, vol. 1242. CEUR-WS.org, Sep. 2014, pp. 56–65.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.openstack.org/developer/heat/
http://cloudml.org
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://aws.amazon.com/cloudformation
http://docs.openstack.org/developer/heat/

	I Introduction
	II From a Model-Driven Forward Engineering to a Model-Based Round-Trip Engineering Approach
	III Technical Realization
	III-A IaaS Metamodel
	III-B Reverse-Engineering a Runtime Model
	III-C Calculating a Diff-Model
	III-D Model Transformation
	III-E Model-Based Enforcement

	IV Application Scenarios
	IV-A Initial Provisioning
	IV-B Runtime Adaptation
	IV-C Alignment
	IV-D Migration

	V Experiences from a Case Study
	VI Discussion
	VI-A Comparing Forward and Round-Trip Approaches
	VI-B Round-Trip Engineering Approach

	VII Related Work
	VIII Conclusion
	Acknowledgments
	References

