
Model-Aware Monitoring of SOAs for
Compliance

Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

Abstract Business processes today are supported by process-driven service ori-
ented architectures. Due to the increasing importance of compliance of an organiza-
tion with regulatory requirements and internal policies, there is a need for appropri-
ate techniques to monitor organizational information systems as they execute busi-
ness processes. Event-based monitoring of processes is one of the ways to provide
runtime process-state information. This type of monitoring, however, has limitations
mostly related to the type and amount of information available in events and pro-
cess engines. We propose a novel approach – model-aware monitoring of business
processes – to address these limitations. Emitted events contain unique identifiers of
models that can be retrieved dynamically during runtime from a model-aware repos-
itory and service environment (MORSE). The size of the events is kept small and
patterns of events that signify interesting occurrences are identified through com-
plex event processing and are signaled to interesting components such as a business
intelligence. To illustrate our approach we present an industry case study where we
have applied this generic infrastructure for the compliance monitoring of business
processes.

1 Introduction

Business compliance, i.e., the conformance of an organization’s business activities
and practices with existing laws (cf. [16, 19, 34, 41]), regulations (cf. [4, 27, 26])
and its own internal policies, is a major concern of today’s business community.
However, these compliance concerns frequently change, making it hard to system-
atically and quickly accommodate new compliance requirements. The COMPAS
project [15] aims to design and implement novel models, languages, and an architec-

Ta’id Holmes · Emmanuel Mulo · Uwe Zdun · Schahram Dustdar
Distributed Systems Group, Institute of Information Systems, Vienna University of Technology,
Vienna, Austria, e-mail: {tholmes, e.mulo, zdun, dustdar}@infosys.tuwien.ac.at

1



2 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

tural framework to ensure dynamic and on-going compliance of software services to
business regulations and stated user service-requirements. In this chapter we present
part of the results from this project related to runtime monitoring of compliance in
process-oriented systems.

Business processes are today supported by process-driven service oriented ar-
chitectures (SOA). A business process comprises a collection of related, structured
activities within or across organizations, that produce a specific service or product
for a particular customer. Process-driven SOAs aim to increase productivity, effi-
ciency, and flexibility of an organization, by aligning high-level business processes
with applications supported by information technology. Such architectures consti-
tute a process (or workflow) engine that orchestrates services to realize activities in
a business process [24]. In an enterprise scale process-driven SOA, moreover, there
exist multiple business processes and process instances that are interacting with dif-
ferent external entities at runtime (e.g., services, databases).

While business processes are primarily aimed at creating an output for a speci-
fied consumer, one of the other objectives that they realize is providing an auditable
asset with which an organization can demonstrate its fulfillment of compliance regu-
lations [23]. Monitoring process-driven SOAs (process instances) at runtime enables
a diagnosis of process states, and therefore, provides the necessary information re-
garding the fulfillment of compliance requirements in the business processes. Please
note that in the context of this work such compliance requirements are specified in
terms of models (cf. [6]). Also the processes are generated from models. Thus, for
the development of process-driven SOAs with compliance concerns model-driven
engineering is used.

A typical monitoring solution consists of an external component to which events
are sent – these events are recorded in audit logs (files) that can later be analyzed
to identify anomalies in system behavior [33, 43, 30, 29]. Monitoring solutions that
leverage complex event processing (CEP) techniques, perform an online analysis
of streams of events as they happen [31, 21, 37]. These CEP-based solutions are
able to deduce high-level events, i.e., events that represent certain semantics in a
special domain, through analyzing patterns and properties of the events emitted by
monitored components.

In the context of monitoring business processes with such event-based monitor-
ing solutions, some limitations need to be addressed:

• When designing such solutions, it is hard to foresee all kinds of monitoring in-
formation needed during process execution. An event captures the state of the
process execution at a point in time, whereas for monitoring purposes we are in-
terested in the entire process, i.e., a wider perspective. Moreover, due to changes
of requirements, the monitoring components need to consider additional infor-
mation that is not transmitted with the events.

• Event-based monitoring solutions usually receive very large amounts of events.
Due to the amounts of system resources consumed with this type of monitoring, it
is usually only feasible to process a limited number of events together. Moreover,
it is often not feasible to embed large amounts of data in an event message, such
as a model together with all its related models.



Model-Aware Monitoring of SOAs for Compliance 3

We propose a novel approach, model-aware, event-based monitoring of business
processes at runtime. The monitoring is model-aware in the sense, that it can ac-
cess and reflect on process models at runtime. High-level events (that correspond to
business events), containing references to the process models, are recognized from
low-level process events using complex event processing techniques. The model ref-
erences enable runtime retrieval and reflection on the original process models. As a
consequence, the size of the events is kept small, and (new) models and model ele-
ments can be considered during monitoring. We apply our approach in the context
of monitoring for compliance of business processes. We demonstrate this through a
mobile number portability case study.

The rest of this paper is structured as follows: Section 2 presents a motivating
scenario to highlight the issues that arise during monitoring for compliance and how
our approach aims to address them. Section 3 gives an overview of our approach and
presents the details on the architecture we use to realize this approach. Section 4
presents an industry case study to evaluate our approach, Section 5, discussions,
Section 6, related work, and finally, conclusions in Section 7.

2 Motivating Scenario

In this section, we present a scenario to illustrate issues that arise while monitoring
for compliance in an organization’s business processes. The scenario is based on
mobile number portability (MNP) in mobile telecommunication companies.

Mobile telecommunication companies, usually referred to as Cell Phone Opera-
tors (CPOs), provide voice and data services to their subscribers. A CPO may op-
erate in a single country or have branches in several countries. Inhouse services
are offered by the CPO to manage all the subscribers and their stipulated contracts.
Moreover each subscriber is usually able to view private information regarding their
contract, or public information regarding services offered by the CPO. Not all CPOs
have their own telecom infrastructure – some of them rent the network services from
big telecom companies and provide a service to subscribers. Such a CPO is referred
to as a Virtual Operator (VOs).

In an MNP scenario, a subscriber has the right to keep their mobile telephone
number when switching between CPOs [9]. According to various National and Eu-
ropean Union (EU) regulations (cf. [18]), MNP is one of the mandatory services
a CPO must provide to its subscribers. The MNP procedure is regulated with the
aim of allowing the subscribers to freely select the best CPO according to their re-
quirements, without having to change their contact number. Therefore, one of the
primary compliance concerns for a CPO as they are implementing MNP procedures
is to satisfy national and EU rules and regulations.

There are essentially two steps in the MNP process. The subscriber wishing to
port his number contacts the so-called recipient network, i.e., the CPO who shall
be their new provider. The recipient network then executes the porting. This step of
executing the porting involves a number of sub-activities, including contacting the



4 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

donor network (i.e., the subscriber’s current CPO), performing the porting, possibly
charging the subscriber, and making a payment to the donor network. A number of
issues are regulated in this process. Table 1 shows examples of MNP regulations in
Austria [9].

Table 1 MNP Regulations in Austria [9]

Compliance/Regulatory Issue Example of Implementation

Porting Charges Donor network allowed to charge maxi-
mum C19 porting fees. Recipient network
allowed to charge subscriber C4 – C15.

Speed of Porting Porting should take maximum 3 days.

Porting Initiator Porting initiated by recipient network.

In order to monitor compliance in this scenario, an event-based monitoring so-
lution would transmit a number of events that together reflect occurrence of activi-
ties like Request Number Porting and Execute Number Porting. These events
may, additionally, contain information to identify details like the subscriber number,
the subscriber’s geographical location, and the donor network. In this scenario we
can illustrate some of the limitations we attempt to address in this work.

• We are not able to embed all information in individual events, for example, which
compliance regulation may have been violated. In our scenario, a compliance vi-
olation may occur due to the Execute Number Porting activity, whereby the
porting of the number took longer than the three (3) days permitted by regu-
lations. This activity is detected by correlating a number of low-level events
through CEP techniques. Even then, the complex event processing engine only
correlates the events. We would need another source for more detailed informa-
tion concerning the compliance regulations.

• Such business processes are considered long-running and may take many hours
or days for completion. For event-based monitoring solutions, maintaining a his-
tory of the entire process execution state for every process instance could con-
sume a large amount of resources. Therefore, the monitoring of events would
be performed within limited time windows to save on resources. In this case,
we would need an external source to deduce information concerning the entire
process.

• Some activities within the business processes, for example Charge Customer,
may occur in other business processes and contexts. When we present monitoring
information, however, we would like to know in exactly which of the processes
and context this violation occurred.

With our proposed solution, we address some of the limitations stated here. More
details of this scenario and how we apply our approach are given in the case study
section (Section 4). First, we give details of the approach in Section 3.



Model-Aware Monitoring of SOAs for Compliance 5

3 Model-Aware Event-Based Monitoring

In this section, we present our approach for model-aware, runtime monitoring of
business processes in a process-driven SOA. It is based on monitoring and process-
ing of events, coupled with runtime access to business process models and annotat-
ing models. We first present an overview of the approach and then elaborate on this
overview in subsequent sections.

3.1 Approach Overview

Before we present some parts of the architecture in more detail, we first provide
an overview of our approach. For model-aware monitoring, we propose our Model-
Aware Repository and Service Environment (MORSE) [25] and an event monitoring
and processing infrastructure. Our approach comprises the following steps:

• For the design and development of processes we apply model-driven develop-
ment (MDD). We use a view-based modeling framework [42] to design process
models and generate WS-BPEL [36] (BPEL) code. We propose to store these
process models in a model repository, and require that each model and model
element is uniquely identifiable.

• During code generation we embed traceability information into the BPEL pro-
cesses for relating the code with original models that we make identifiable by
unique identifiers, i.e., UUIDs [28].

• The BPEL process, instrumented with traceability information, contains a BPEL
extension for transmitting low-level events, e.g., for process invocation, contain-
ing traceability information.

• The low-level events are processed by a complex event processing engine. Busi-
ness events are recognized and raised.

• An interested component consumes the business events and provides for adapta-
tion, compensation, or synchronization.

We illustrate our approach in Figure 1. Business processes, represented as pro-
cess models, are at the center of our approach. We propose to store these process
models (1) in a model repository that can be queried (7a and 8a). Each process
model and element in the repository is identifiable by a Universally Unique Identi-
fier (UUID) [28]. The model repository manages and versionizes models and model
instances. Additional information about related models or models in other versions
can be discovered by querying the repository.

In a generation step (2), traceability information is embedded into the process
definition. That is, the process and the process elements are linked in the code via
UUIDs to the models. After this model-to-code transformation an executable form
of a business process, such as BPEL [36], is provided to a process engine (3). Each
process execution essentially orchestrates different business activities to realize the
entire process. In order to monitor a process execution (4), we monitor the progress



6 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

2) generate process definition
(embeds traceability information)

7a) request models

7b) query on
process instance data

Process 
Engine

Event Processing
Engine

3) deploy on

5) submits low-level events

Process 
Definition

6) raises business events

Adaptation

Compensation

Synchronization

UUID1

M1

UUID4

UUID1,4,5

UUID1,2

processID
engineURL

4) execute a
process 
instance UUID1,2,3

processID
engineURL

E1 E2

UUID2

M2

UUID1,4,5

M1,4,5

1) design process models

8a) return models

Low-Level Event Processing

High-Level Event Processing

MORSE

UUID3

M3

UUID3

processID
engineURL

processID
engineURL

B1

Repository

UUID5

M5

UUID4

M4

Fig. 1 Overview of the Approach

of each process instance through events that are emitted by the process engine (5).
Within these events, we embed the UUIDs of the instance’s process model. Events
emitted by the process engine are considered low-level events. In order to detect
events at a business level, complex event processing techniques are applied (6).
Business events containing, among other things, the relevant UUIDs are passed on
to a component, say business intelligence (BI) component, that can perform sub-
sequent retrieval and reflection on the process models (7a and 8a). For accessing
instance data, we assume the process engine also exposes an interface for querying
(7b).

In the following sections we present the details of our model-aware, event-based
monitoring approach.



Model-Aware Monitoring of SOAs for Compliance 7

3.2 Model-Aware Repository and Service Environment

In our approach we aim at addressing the problem of monitoring and analyzing busi-
ness processes to identify compliance violations through MORSE1. For the processes
and the compliance concerns we use dedicated models. These models are used in
the model-driven development (MDD) process and related to during runtime. Thus,
information on a process such as stored in control-, orchestration-, or information-
view models [42] and annotating compliance models is stored in and managed by
MORSE that allows for the storage and retrieval of MORSE objects such as models,
model elements, model instances, and other MDD artifacts. It offers read and write
access to all artifacts at runtime and design time. Moreover, it stores relationships
among the MDD artifacts, e.g., model-relationships such as instance, inheritance,
and annotation relations. Moreover, the MORSE repository provides versioning ca-
pabilities not only to MDD artifacts, but also to their relationships. This way, models
can be manipulated at runtime of the client system with minimal problems regarding
maintenance and consistency. New versions and old versions of the models can be
maintained in parallel, so that old model versions can be used until all their model
instances are either deleted or migrated to the new model version.

Figure 2 shows the internal architecture of MORSE. The model repository ex-
poses all its functionality as Web services which ease the integration of MORSE into
service-oriented environments. The services can be consumed by various clients,
e.g., design tools, administrative clients, monitoring services, or services that pro-
vide for adaptation. Thus, MORSE supports the development of models during
design-time and allows for the retrieval of models at runtime.

3.2.1 Model-Traceability for Process-Driven SOAs

With MORSE we follow a model-driven approach. That is, we apply model-to-code
transformation for the generation of process code, deployment artifacts, and moni-
toring directives. For this the process models and annotating models such as a com-
pliance metadata model are processed by a transformation template. During this
step we embed traceability information into the generated code so that the original
model(s) can be related to during runtime. As MDD artifacts in MORSE repositories
are identifiable by UUIDs, the traceability information uses these UUIDs as well.
Thus, the generator automatically weaves references into the generated source code
or configuration instructions, so that the corresponding models can be identified and
accessed from the running system.

For the traceability of models in process-driven SOAs we propose an extension
for BPEL. Figure 3 shows an excerpt of a BPEL process2 with a BPEL extension
for mapping code elements of the BPEL process to MORSE object identifiers. The
traceability element, that indicates the UUID of the build as an attribute, is a

1 http://www.infosys.tuwien.ac.at/prototype/morse
2 For simplicity reasons most XML namespaces have been omitted.



8 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

MORSE Repository

Web Service 
Interfaces

Generic 
Repository 
Interface

MDD Project 
Administration 

Interface

Resource 
Management 

Interface

Information 
Retrieval 
Interface

Runtime Client

Modeling Tools

create/modify models

query models & projects

MDD Project 
Admin Client

build, deploy project

access

access

Persistence 
Backend

Builder
Service

Deployment
Service

invoke

access

access

Fig. 2 MORSE Architecture

sequence of rows that maps BPEL elements to the uuids of corresponding MORSE
objects. The XML Path Query Language (XPath) [5] is chosen as the default query
language for selecting the XML elements of the BPEL code. For extensibility, an
optional queryLanguage attribute, that has the same semantics as in BPEL (cf.
Section 8.2 of [36]), can specify an alternative query language or XPath version.

Note that this traceability information can annotate any XML based target code
and can often be supplied as an inline extension3. It can also be supplied exoge-
nously within a separate file. As a consequence, our approach is not limited to BPEL
but can applied to other process languages as well.

3.3 Event Monitoring and Processing

In MORSE each model and model-element is identifiable by a UUID. These are
embedded as traceability-links in the process definition as discussed in the previ-
ous section. During process execution, events are emitted by the process engine, for
example, an activity starts, a database is accessed, etc. Whereas the events emitted
by the process engine are considered low-level events, we are interested in busi-
ness related events. Business events cannot be observed directly – rather, they are
derived by observing and aggregating patterns of low-level events, through certain
processing rules. Therefore, in addition to monitoring, events are processed to iden-
tify high-level events that have significance from the business perspective, e.g., a

3 Supposed that such extensibility is provided with an any element in the XML schema.



Model-Aware Monitoring of SOAs for Compliance 9

<process name="NumberPortabilityProcess">
<extensions>

<extension mustUnderstand="yes"
namespace="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"/>

</extensions>
<import importType="http://www.w3.org/2001/XMLSchema"

namespace="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"
location="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"/>

<morse:traceability build="ec46dcdc-3f81-4dec-b437-8da5269ad334">
<row query="/process[1]"

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
<uuid>65130c63-dda7-4193-9bac-fe7eda9f38b9</uuid>
<uuid>2e3261fc-452c-4b55-8c77-fc4aaac29ddf</uuid>
<uuid>9a7f6681-2616-4797-9510-0c5cd126b24c</uuid>
<uuid>11194fb5-3b9f-4507-a3a0-6b3f7e8e146a</uuid>

</row>
<row query="/process[1]/sequence[1]/receive[1]">

<uuid>0e4bc6b8-8f28-4e0d-a8f7-ebf99bf95b62</uuid>
</row>
<row query="/process[1]/sequence[1]/invoke[2]">

<uuid>8b62c1ef-2c12-41f3-a660-dae82c6168dc</uuid>
</row>

</morse:traceability>
<sequence>

<!-- ... //-->
</sequence>

</process>

Fig. 3 BPEL Process with an Extension for MORSE Traceability

low-level event indicating database access might not be so interesting, however, a
combination of events that indicate completion of a specific business activity is of
more interest to business actors.

As a business process is executed, events are emitted that represent the state
in the progress of the business process. In a large scale SOA, multiple instances
of different business processes execute concurrently, resulting in the emission of
an interwoven sequence of events. The event processing engine has a sequential
view of these events as they arrive at its interface. In order to process these events,
the event processing engine is configured with queries based on a number of fac-
tors like the type of event, the data contained within the event, or the expected
patterns of events. Typically queries for configuring the engine are defined in an
Event Processing Language (EPL). These EPL statements are similar to Structured
Query Languages (SQL) for database querying. The statements instruct the engine
on which events, event data, or patterns of events to search for in an event stream.
For example, the query shown in the inset of Figure 4 enables the engine to identify
a business activity D from a stream of events.

The queries enable the correlation of events and identification of a particular
group of business events within a specific process instance. In Figure 4, we see the
pattern of events 8-9-10 matches activity D of a process instance. Further filtering of
events is performed through comparison of their parameters. In the example, we use



10 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

E

D

2 2 81 10 11 9 12 13
x y w xxx

y

y yy

B

10
x

x
x

INSERT INTO Event D
SELECT * FROM 
pattern [8-9-10]
WHERE param.8 = param.9

Fig. 4 EPL Query

the subscript x as a parameter to indicate that these events belong to the same process
instance. The WHERE clause performs a more fine-grained selection of events based
on related parameters, for example, the process instance. Within the same stream,
there are other events that belong to different process instances. Therefore, using
such filtering mechanisms we are able to separate events into different business
activities in their distinct process instances. Finally, these business-events are passed
on to a BI component to make the necessary compliance checks and decisions on
actions to take.

Combining the low-level and high-level events with runtime access to a model
repository, we provide information to enable compliance detection tasks. Business
events represent the execution progress of a process instance and, in addition, pro-
vide a UUID to its process model. The UUIDs enable querying of the model reposi-
tory, for retrieval of additional information that is not directly accessible to the event
processing engine, but is required for compliance detection.

4 Case Study

In this section we present details of the case study introduced in Section 2 that deals
with monitoring for compliance in the mobile number portability (MNP) process.
We demonstrate how we use our approach to achieve a model-aware, event-based
monitoring solution, that checks for compliance at runtime. In the first step, we
need to annotate the process models with compliance data. We do not present de-
tails concerning the MDD environment, however, it is important to note that when
the executable processes are generated from the process models, UUIDs are incor-



Model-Aware Monitoring of SOAs for Compliance 11

porated into them to allow for unique identification of the models. Following this
we define relevant EPLs that enable filtering of the low-level events to high-level,
business events. We consider one of the compliance requirements that relates to the
quality of service (QoS) regarding the MNP process, i.e., the portability needs to be
performed within three (3) days (cf. Table 1).

4.1 Annotating Business Process Models with Compliance
Concerns

Figure 5 illustrates an excerpt of a compliance model with concepts from the
compliance domain. In this domain compliance experts derive Compliance

Requirements from Compliance Sources. Such sources refer to national, Eu-
ropean, or international regulations and laws or internal policies. For realizing the
compliance to requirements, Controls are employed together with Compliance

Rules. The latter formalize the requirements for a control in a way suitable for the
BI to check the compliance of a system. Using Controls, Compliance Targets

such as Business Processes, activities (BP Activities), and external Web

Services can be annotated.
In our work we use name-based matching for such annotations. That is, model

elements from different models that contain the same name are matched. Thus, a
process P with the name MNP in a model M1 can be annotated exogenously by a
compliance model M2. In this model a control C references a named element with
the same name MNP. Please note, that our approach is not limited to name-based
matching. Any form of annotation or direct relation from compliance controls to
compliance targets is possible in order to specify compliance concerns for business
processes.

Compliance
Rule

*

*

1..N

Compliance
Risk

Compliance
Source

Compliance 
Target

Compliance 
Requirement

*
1..*

1..* 1..*

1

*

Control

*
1..*

*
Business 
Process

Web 
Service

BP Activity

Fig. 5 Excerpt of a Compliance Model



12 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

For the generation of process definitions, instances of the process and compliance
models are taken as inputs. The MORSE builder service realizes this generation step
of the model-driven development process by weaving traceability information into
the code. This traceability information is stored as a traceability matrix that relates
code elements to the UUIDs of the model(-element)s.

The traceability matrix was realized as a BPEL extension (see also Sec-
tion 3.2.1)4. We modified the Apache ODE [40] BPEL process engine so that
events from the engine contain the UUIDs as specified in the BPEL extension.
That is, if a BPEL event for an activity is raised by the engine it would contain the
correlating UUIDs for the activity as specified in the traceability matrix.

4.2 Event Processing

In order to detect business events of interest, a CEP engine is configured automati-
cally with EPL rules or statements that specify event types, event data, and patterns
of events to detect at runtime. The CEP engine observes a stream of low-level events
emitted by the process execution engine and deduces that a particular business event
has occurred.

In our MNP process, a number of low-level events are emitted by the Apache
ODE process engine in response to the execution of the different process steps.
The events contain, among other things, the process engine’s internal identifier of
the process instance (processID), a URL of the process engine, and UUIDs of the
models and model-elements that relate to the process and process elements. Using
the low-level events, we monitor that the Execute Number Porting activity oc-
curred before we can alert of the need to check for compliance. We have the simple
EPL statements illustrated in Figure 6, that show how such an event combination can
be monitored with CEP. The EPL statement emits a business event corresponding to
the Execute Number Porting activity. This event includes the process identifier
and a UUID indicating the target model to be checked in the repository.

INSERT INTO ExecuteNumberPortEvent(pid, sUUID, eUUID)
SELECT StartEvent.pid, 

StartEvent.UUID,
EndEvent.UUID

FROM ActivityExecStartEvent as StartEvent, 
ActivityExecEndEvent as EndEvent

WHERE StartEvent.pid = EndEvent.pid AND
StartEvent(id = 'executeNumberPort')

Fig. 6 Number Portability EPL

4 Following a model-driven approach we profit from the abstraction and platform independent
models. That is, although we realized support for the generation of BPEL code, our approach is
not limited to this technology but support for other process languages can be developed.



Model-Aware Monitoring of SOAs for Compliance 13

Since the UUIDs of the business process models and model elements are embed-
ded in the events, we send them to the BI component that uses them to query the
MORSE repository in order to look up more information concerning the process. We
present the types of tasks that would be expected from such a BI component in the
next section.

4.3 Compliance Checking

The compliance checks are performed by a BI component that receives business
events from the CEP engine. The BI component uses the event type and UUID
data in order to determine what compliance concerns have to be checked, and in
case of compliance violations consequently what actions to invoke. As the Execute
Number Porting activity executes, the process execution engine emits low-level
events to the CEP engine, e.g., when a process activity is started. However, when
the combination of two process engine events ActivityExecStartEvent and
ActivityExecEndEvent, have occurred, the CEP engine recognizes this as a busi-
ness event Execute Number Portability, and alerts the BI component the occur-
rence of this business event.

For realization of the compliance checking, we assume that the process engine
exposes an API for querying process instance data, e.g., variables of a process in-
stance. The BI component consumes the business event, looks up the compliance
metadata model from the repository and requests process-instance data, i.e., the
time, the activities have been performed, from the process engine. With this infor-
mation, i.e., by reflecting on the compliance model and process instance data, a vio-
lation of the compliance requirement as stated in Table 1 can be determined. Finally,
if a violation was detected, a compensation action can be initiated. For example, the
Cell Phone Operator may account free credits to the customer as a compensation to
the tardy number porting.

5 Discussion

In this section we motivate some advantages and limitations of our model-aware,
event-based monitoring approach.

First of all, with the MORSE approach we expand the usage of models and prop-
agate them from the design time to the runtime. That is, models are not only used
for describing business processes and specifying compliance concerns during design
time but they are related to during runtime, using automatically embedded traceabil-
ity information, and used for the compliance checks. Coupled with an event-based
(CEP) approach, a business intelligence profits from accessing and reflecting on the
models. That is, having defined abstraction levels, the conceptual models are suit-
able for the required reflections.



14 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

Upon the detection of a compliance violation, the user typically wants to under-
stand which process has caused the violation and why. With MORSE the user can
access the process model that has caused the violation. However, the process model
in general is not the only relevant information or not the root cause of the violation.
Other models such as a compliance model that annotates the process model might
carry the answer to the violation; hence, they are accessed, too. Examples are the
model specifying the compliance rule that has been violated or the models of the
processes that have invoked the process leading to the violation. Finally, once the
root cause has been identified, it is likely that the user will fix the affected models.
Then, the corrected models should from then on be used for new instances of the
business processes. Here, a transparent versioning support as realized by MORSE
is crucial, as it is typically not possible to automatically migrate running process
instances from one model to another. Old model versions are supported as long as
instances of them are running, unless the execution of such instances is halted.

Event-based (CEP) monitoring solutions usually receive large volumes of events.
Typically, these solutions do not persist long-running information about process
executions. This limits the size of the window of events, over which these solu-
tions are able to store and process data regarding process executions – processing
a large window size would require lots of computing resources. In our approach,
we embed traceability information, i.e. identifiers to models and model-elements,
in the process events. In this way, the CEP engine is still able to identify interest-
ing business events, and in a further step, relevant information concerning the entire
process model and process instance data can be retrieved by a business intelligence
(BI) component. For instance, the BI can lookup process and annotating compliance
models such as compliance requirements and rules at MORSE as well as process-
instance data from the process engine. Additionally, we believe that size of events is
kept to a minimum when we use traceability information that allows later querying.

Because compliance rules are looked up by the BI, they may dynamically change
during runtime without the need to adapt the CEP. For example, the BI may want to
consider the latest requirements when determining the compliance. In other circum-
stances processes only need to comply to the set of requirements as effective during
instantiation. Both scenarios are supported with MORSE, that realizes a transparent
versioning of models.

There is a clear separation of the CEP engine, that task is to identify interesting
events, and the BI, that reasons about the compliant execution. Thus, the CEP does
not need to comprise the logic from the BI but its configuration is kept simple and
therefore is manageable. In contrast, the BI unit focuses on determining the com-
pliant execution. It does so by, first, retrieving all relevant information and, second,
reason about it.

One of the main limitations we view with our approach at the moment, is that
for some scenarios it is not readily applicable to support long-running monitoring at
the process instance level – this would require access to process instance variables.
We currently assume existence of a query interface on the process engine, which
provides access to this information.



Model-Aware Monitoring of SOAs for Compliance 15

Our approach assumes that model-driven engineering is used for the develop-
ment of the system. That is, the business process definitions (BPEL code) and the
traceability matrix (BPEL extension for the MORSE traceability) are generated from
models. It is possible to introduce our approach into a non-model-driven project
(e.g., as a first step into model-driven development). For that, existing business pro-
cess definitions would be manually extended and related to compliance models. In
this case the traceability matrix would only relate elements from the process defi-
nition to compliance models but not process models. This would limit the business
intelligence in case the latter models are needed as well.

Finally, our approach introduces some complexity to the system. That is, in ad-
dition to the process engine we employ a MORSE repository, a CEP engine, and a
business intelligence.

6 Related Work

Some of the work related to integrated event-based monitoring solutions are now
presented. In addition we relate to work in the field of requirements monitoring.
Finally, we mention on various model repositories and compare to MORSE.

6.1 Related Work on Event-based Monitoring

Event-based support of process executions has been previously researched [12, 22].
Casati and Discenza [12] proposes extending workflow models with the capability
to specify points at which events can be raised during the workflow execution. This
is a similar idea to the events raised by the process engine in our approach, except
that in our case, the engine would emit a fixed set of events (process started, process
end); in their approach, the user has greater control over the types of events emitted
and when an event should be emitted. Their approach also proposes an event service
that can filter and correlate events to dispatch them to other workflow models. The
main difference in our approach is the use of the model repository to provide extra
information concerning process models. Hagen and Alonso [22] use events for di-
rect communication between processes. A process instance exchanges an event with
another process instance, to make decisions on how to proceed with the execution.

In the MOSES approach and framework [11], process models (e.g., BPEL) are
fed into the system – these models are required to fulfill certain criteria. The system
builds a behavioral model which is used in optimization calculations. Monitoring at
runtime observes the system and the optimization calculations to decide on adapta-
tion. The monitoring, however, is not based on events, and the process models fed
into the system are from external entities, hence necessitating model verification. On
the other hand the approach provides adaptation based on per instance variables. A
similar idea to the MOSES approach is proposed by Cappiello et al. [10], where



16 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

quality attributes are monitored to determine adaptation. The difference is that this
approach proposes predictive adaptation.

6.2 Related Work on Requirements Monitoring

While particular monitoring infrastructures can be integrated with MORSE and used
for the compliance checking, our work particularly focuses on relating to models,
the monitored systems have been generated from. Thus, our work makes such mod-
els accessible at runtime. Note, that not only, e.g., process models but also compli-
ance concern models are managed by MORSE. This allows for the novel and direct
linkage and correlation of model-driven system and requirements models. In this
section we refer and relate to work in the areas of runtime requirements-monitoring.

Feather et al. [20] discuss an architecture and a development process for monitor-
ing system requirements at runtime. It builds on work on goal-driven requirements
engineering [17] and runtime requirements monitoring [14].

Skene and Emmerich [38] apply MDD technologies for producing runtime re-
quirements monitoring systems. This is, required behavior is modeled and code is
generated for, e.g., the eventing infrastructure. Finally, a metadata repository col-
lects system data and runs consistency checks to discover violations. While in our
work we also showcase the generation of code for the eventing infrastructure (see
Section 3.2), our approach assumes an existent monitoring infrastructure. In case of
a violation the MORSE approach not only allows us to relate to requirement models
but also to the models of the monitored system.

Chowdhary et al. [13] present a MDD framework and methodology for creating
Business Performance Management (BPM) solutions. This is, a guideline is de-
scribed for implementing complex BPM solutions using an MDD approach. Also,
with inter alia the specification of BPM requirements and goals the framework pro-
vides runtime support for (generating) the eventing infrastructure, data warehouse,
and dashboard. The presented approach allows for the monitoring and analysis of
business processes in respect of their performance. Thus, similarly to our approach,
compliance concerns such as quality of service concerns as found in service level
agreements can be specified and monitored by the framework. Besides the mon-
itoring of business processes and service-based systems in general, our approach
particularly focuses on also relating to conceptual models of the systems from the
runtime, not only their requirements. As a consequence, the system and end-users
can directly relate to the MDD artifacts of a system in case of a violation. This
allows for the subsequent reflection, adaptation, and evolution of the system. In
contrast, the BPM solution supports compensation, i.e., the execution of business
actions according to a decision map.

Another model-based design for the runtime monitoring of quality of service as-
pects is presented by Ahluwalia et al. [1]. Particularly, an interaction domain model
and an infrastructure for the monitoring of deadlines are illustrated. In this approach,
system functions are abstracted from interacting components. While a model-driven



Model-Aware Monitoring of SOAs for Compliance 17

approach is applied for code generation, the presented model of system services is
only related to these in a sense that it reflects them. This is, it is not a source model
for the model-driven development of the services. In contrast, MORSE manages and
is aware of the real models, systems are generated from. This allows for root cause
analysis and evolution of as demonstrated in the presented case study.

6.3 Related Work on Model Repositories

Besides the monitoring of runtime requirements in form of compliance concern
models, the MORSE approach particularly focuses on the management of mod-
els of service-based systems and their accessibility during runtime. Particularly,
it targets at integration with services and – as presented in this work – facilitates
model-aware monitoring. For this reason, a model repository with versioning capa-
bilities is deployed (see Section 3.2). It abstracts from modeling technologies and its
UUID-based implementation allows for a straightforward identification of models
and model elements.

Other model repositories primarily aim at model-based tool integration. Mod-
elBus [39], e.g., addresses the heterogeneity and distribution of model tools and
realizes transparent model update. Designed as an open environment, ModelBus
focuses on integrating functionality such as model verification, transformation, or
testing into a service bus.

Odyssey-VCS 2 [35] is an EMF based model repository after initially relying
on the NetBeans Metadata Repository [32]. Odyssey-VCS 2 [35] and AMOR [2,
7] particularly have a focus on the versioning aspect of model management (see
also [3]), e.g., for the conflict resolution in collaborative development (cf. [8]).

These works mainly focus on the design time. MORSE, in contrast, focuses on
runtime services and processes and their integration, e.g., through monitoring, with
the repository and builds on the simple identification for making models accessible
at runtime. Instead of aiming at reconciling a multitude of modeling tools’ lan-
guages and the integration of arbitrary (legacy) tools, MORSE also concentrates on
some selective concepts such as relations between models. The MORSE repository
abstracts from technologies, focuses on MDD projects, and targets at integration
with services.

7 Conclusion

We propose a model-aware approach for runtime monitoring of business compliance
in process-driven SOAs. Our approach leverages a model repository and event-based
monitoring. Business process models are stored in a model repository that can be
queried. The process models are uniquely identifiable, and relations between process
models can also be discovered. During execution a process engine emits low-level



18 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

events, embedded with a reference to the process models. These low-level events are
correlated into high-level business events that trigger compliance checking actions.
Any additional information required for compliance checks is retrievable through
the query interface of our MORSE repository.

With the model-aware monitoring for SOAs we have presented a novel and
generic approach of how to relate system models and system requirements models.
In the context of compliance monitoring for example and by relating processes and
process activities to compliance models a business intelligence has reacher means
of analyzing the runtime process execution as dynamic reflection on the models and
related models becomes possible.

Our approach supports compliance checking by combining the power of CEP
techniques, which work best in a limited processing window, and the model query-
ing capabilities from a model repository to provide a wider context of information
from the models. At the moment, for context information regarding a process model,
we provide MORSE. However, at the process instance level, we assume the possibil-
ity to query an event processing engine. Our future work shall look into how such
a querying interface can be provided for an engine, to manage queries at process
instance level.

Acknowledgements For realizing support for the BPEL extension for the MORSE traceability at
the Apache ODE engine the authors would like to thank Petra Bierleutgeb as well as the Institute
of Architecture of Application Systems from the University of Stuttgart for their work.

This work was supported by the European Union FP7 project COMPAS, grant no. 215175.

References

1. Jaswinder Ahluwalia, Ingolf H. Krüger, Walter Phillips, and Michael Meisinger. Model-based
run-time monitoring of end-to-end deadlines. In Wayne Wolf, editor, EMSOFT, pages 100–
109. ACM, 2005.

2. K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger, M. Seidl, W. Schwinger, and
M. Wimmer. AMOR – towards adaptable model versioning. In 1st International Workshop on
Model Co-Evolution and Consistency Management, in conjunction with MODELS ’08, 2008.

3. Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A survey on model versioning
approaches. IJWIS, 5(3):271–304, 2009.

4. Bank for International Settlements. Basel II: International Convergence of Capital
Measurement and Capital Standards: A Revised Framework - Comprehensive Version.
http://www.bis.org/publ/bcbsca.htm, June 2006. [accessed in June 2010].

5. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernndez, Michael Kay, Jonathan
Robie, and Jrme Simon. XML path language (XPath) 2.0. W3C recommendation, W3C,
January 2007. [accessed in July 2009].

6. Jean Bézivin. On the unification power of models. Software and System Modeling, 4(2):171–
188, 2005.

7. Petra Brosch, Philip Langer, Martina Seidl, and Manuel Wimmer. Towards end-user adapt-
able model versioning: The by-example operation recorder. In CVSM ’09: Proceedings of
the 2009 ICSE Workshop on Comparison and Versioning of Software Models, pages 55–60,
Washington, DC, USA, 2009. IEEE Computer Society.



Model-Aware Monitoring of SOAs for Compliance 19

8. Petra Brosch, Martina Seidl, Konrad Wieland, Manuel Wimmer, and Philip Langer. We can
work it out: Collaborative conflict resolution in model versioning. In ECSCW 2009: Pro-
ceedings of the 11th European Conference on Computer Supported Cooperative Work, pages
207–214. Springer, 2009.

9. Stefan Buehler, Ralf Dewenter, and Justus Haucap. Mobile number portability in europe.
Telecommunications Policy, 30(7):385 – 399, 2006. Mobile Futures.

10. Cinzia Cappiello, Kyriakos Kritikos, Andreas Metzger, Michael Parking, Barbara Pernici,
Pierluigi Plebani, and Martin Treiber. A quality model for service monitoring and adapta-
tion. In First Workshop on Monitoring, Adaptation and Beyond in conjunction with ICSOC-
ServiceWave Conference, pages 183–195, 2008.

11. Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Francesco Lo Presti, and Raffaela
Mirandola. Qos-driven runtime adaptation of service oriented architectures. In Proceedings of
the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering on European software engineering
conference and foundations of software engineering symposium, pages 131–140. ACM, 2009.

12. Fabio Casati and Angela Discenza. Supporting workflow cooperation within and across orga-
nizations. In Proceedings of the 2000 ACM symposium on Applied computing, pages 196–202.
ACM, 2000.

13. Pawan Chowdhary, Kumar Bhaskaran, Nathan S. Caswell, Henry Chang, Tian Chao, Shyh-
Kwei Chen, Michael J. Dikun, Hui Lei, Jun-Jang Jeng, Shubir Kapoor, Christian A. Lang,
George A. Mihaila, Ioana Stanoi, and Liangzhao Zeng. Model driven development for busi-
ness performance management. IBM Systems Journal, 45(3):587–606, 2006.

14. Don Cohen, Martin S. Feather, K. Narayanaswamy, and Stephen S. Fickas. Automatic mon-
itoring of software requirements. In ICSE ’97: Proceedings of the 19th international confer-
ence on Software engineering, pages 602–603, New York, NY, USA, 1997. ACM.

15. COMPAS Consortium. Compliance-driven Models, Languages, and Architectures for Ser-
vices. http://compas-ict.eu, February 2007. [accessed in June 2010].

16. Congress of the United States. Public Company Accounting Reform and In-
vestor Protection Act (Sarbanes-Oxley Act), Pub.L. 107-204, 116 Stat. 745.
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html, July 2002. [ac-
cessed in June 2010].

17. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed requirements ac-
quisition. Sci. Comput. Program., 20(1-2):3–50, 1993.

18. European Parliament and Council. Directive 2002/22/EC of the European Parliament and
of the Council of 7 March 2002 on universal service and users’ rights relating to elec-
tronic communications networks and services (Universal Service Directive). http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0022:EN:NOT, March 2002.
[accessed in June 2010].

19. European Parliament and Council. Directive 2004/39/EC on markets in financial in-
struments. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:02004L0039-
20060428:EN:NOT, April 2004. [accessed in June 2010].

20. M.S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling system require-
ments and runtime behavior. In Software Specification and Design, 1998. Proceedings. Ninth
International Workshop on, pages 50–59, Apr 1998.

21. Torsten Greiner, Willy Düster, Francis Pouatcha, Rainer von Ammon, Hans-Martin Brandl,
and David Guschakowski. Business activity monitoring of norisbank taking the example of
the application easycredit and the future adoption of complex event processing (CEP). In
Proceedings of the 4th international symposium on Principles and practice of programming
in Java, pages 237–242. ACM, 2006.

22. C. Hagen and G. Alonso. Beyond the black box: event-based inter-process communication in
process support systems. In 19th IEEE International Conference on Distributed Computing
Systems, pages 450–457, 1999.

23. Michael Havey. Essential Business Process Modeling. O’Reilly Media, Inc., 2005.



20 Ta’id Holmes, Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar

24. C. Hentrich and U. Zdun. Patterns for process-oriented integration in service-oriented archi-
tectures. In Proceedings of 11th European Conference on Pattern Languages of Programs,
July 2006.

25. Ta’id Holmes, Uwe Zdun, and Schahram Dustdar. MORSE: A Model-Aware Service En-
vironment. In Markus Kirchberg, Patrick C. K. Hung, Barbara Carminati, Chi-Hung Chi,
Rajaraman Kanagasabai, Emanuele Della Valle, Kun-Chan Lan, and Ling-Jyh Chen, editors,
Proceedings of the 4th IEEE Asia-Pacific Services Computing Conference (APSCC), pages
470–477. IEEE, December 2009.

26. Information Systems Audit and Control Association. Control Objectives for Information and
Related Technology (CobiT). http://www.isaca.org/cobit, 1996. [accessed in June 2010].

27. International Accounting Standards Committee (IASC) Foundation. International Financial
Reporting Standards. http://www.iasb.org/IFRSs/IFRS.htm. [accessed in June 2010].

28. International Telecommunication Union. ISO/IEC 9834-8 Information technology – Open
Systems Interconnection – Procedures for the operation of OSI Registration Authorities: Gen-
eration and registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1
object identifier components, September 2004.

29. Jin Gu Kang and Kwan Hee Han. A business activity monitoring system supporting real-time
business performance management. In Third International Conference on Convergence and
Hybrid Information Technology, volume 1, pages 473–478, November 2008.

30. P. Kung, C. Hagen, M. Rodel, and S. Seifert. Business process monitoring & measurement
in a large bank: challenges and selected approaches. In Sixteenth International Workshop on
Database and Expert Systems Applications, pages 955–961, August 2005.

31. David C. Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, 2002.

32. Martin Matula. NetBeans metadata repository. http://mdr.netbeans.org. [accessed in July
2009].

33. C. McGregor and S. Kumaran. Business process monitoring using web services in B2B e-
commerce. In Parallel and Distributed Processing Symposium., Proceedings International,
pages 219–226, 2002.

34. Ministre de l’conomie, des finances et de lindustrie. loi de scurit financire.
http://www.senat.fr/leg/pjl02-166.html, February 2003. [accessed in June 2010].

35. Leonardo Murta, Chessman Corrêa, ao Gustavo Prudêncio Jo and Cláudia Werner. Towards
Odyssey-VCS 2: Improvements over a UML-based version control system. In CVSM ’08:
Proceedings of the 2008 international workshop on Comparison and versioning of software
models, pages 25–30, New York, NY, USA, 2008. ACM.

36. Organization for the Advancement of Structured Information Standards. Web service business
process execution language version 2.0. OASIS Standard, OASIS Web Services Business
Process Execution Language (WSBPEL) TC, January 2007. [accessed in February 2010].

37. S. Rozsnyai, R. Vecera, J. Schiefer, and A. Schatten. Event cloud - searching for corre-
lated business events. In The 9th IEEE International Conference on E-Commerce Technol-
ogy and the 4th IEEE International Conference on Enterprise Computing, E-Commerce, and
E-Services, pages 409–420, July 2007.

38. James Skene and Wolfgang Emmerich. Engineering runtime requirements-monitoring sys-
tems using mda technologies. In Rocco De Nicola and Davide Sangiorgi, editors, TGC, vol-
ume 3705 of Lecture Notes in Computer Science, pages 319–333. Springer, 2005.

39. Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervais. Supporting transparent model
update in distributed case tool integration. In Hisham Haddad, editor, SAC, pages 1759–1766.
ACM, 2006.

40. The Apache Software Foundation. Apache ODE (Orchestration Director Engine).
http://ode.apache.org. [accessed in June 2010].

41. The Netherlands Corporate Governance Committee. The Dutch corporate governance code.
http://www.commissiecorporategovernance.nl/page/downloads/CODE DEF ENGELS COM-
PLEET II.pdf, December 2003. [accessed in June 2010].



Model-Aware Monitoring of SOAs for Compliance 21

42. Huy Tran, Uwe Zdun, and Schahram Dustdar. View-based and model-driven approach for
reducing the development complexity in process-driven SOA. In Intl. Working Conf. on Busi-
ness Process and Services Computing (BPSC’07), volume 116 of Lecture Notes in Informatics,
pages 105–124, sep 2007.

43. M. zur Muehlen and M. Rosemann. Workflow-based process monitoring and controlling-
technical and organizational issues. In Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, page 10 pp. vol.2, 2000.





Glossary

The following definitions5 have been taken from the COMPAS project.

Compliance Conformity in fulfilling compliance requirements.

Compliance Requirement A constraint or assertion that results from the interpre-
tation of the compliance sources. It may be defined in various levels of abstraction.

Compliance Risk The risk of impairment to the organizations business model, rep-
utation and financial condition (resulting) from failure to meet compliance require-
ments.

Compliance Rule An operative definition of a compliance requirement.

Compliance Rule Violation A dissatisfaction of a compliance rule with respect to
a compliance target or compliance target instance.

Compliance Source A document that is the origin of compliance requirements.

Compliance Control A statement that describes the restraining or directing influ-
ence to check, verify, or enforce rules to satisfy one or more compliance requirement
– at the business level.

5 http://compas-ict.eu/terminology

23


