
Modeling Process-Driven SOAs – a
View-Based Approach

Huy Tran, Ta’id Holmes, Uwe Zdun, Schahram Dustdar
Distributed Systems Group, Institute of Information Systems
Vienna University of Technology, Austria

ABSTRACT

This chapter introduces a view-based, model-driven approach for process-driven, service-oriented
architectures. A typical business process consists of numerous tangled concerns, such as the process
control flow, service invocations, fault handling, transactions, and so on. Our view-based approach
separates these concerns into a number of tailored perspectives at different abstraction levels. On the one
hand, the separation of process concerns helps reducing the complexity of process development by
breaking a business process into appropriate architectural views. On the other hand, the separation of
levels of abstraction offers appropriately adapted views to stakeholders, and therefore, helps quickly re-
act to changes at the business level and at the technical level as well. Our approach is realized as a
model-driven tool-chain for business process development.

INTRODUCTION
Service-oriented computing is an emerging paradigm that made an important shift from traditional tightly
coupled to loosely coupled software development. Software components or software systems are exposed
as services. Each service offers its functionality via a standard, platform-independent interface. Message
exchange is the only way to communicate with a certain service.

The interoperable and platform independent nature of services underpins a novel approach to business
process development by using processes running in process engines to invoke existing services from
process activities (also called process tasks or steps). Hentrich and Zdun (2006) call this kind of
architecture a process-driven, service-oriented architecture (SOA). In this approach, a typical business
process consists of many activities, the control flow and the process data. Each activity corresponds to a
communication task (e.g., a service invocation or an interaction with a human), or a data processing task.
The control flow describes how these activities are ordered and coordinated to achieve the business goals.
Being well considered in research and industry, this approach has led to a number of standardization
efforts such as BPEL (IBM et al., 2003), XPDL (WfMC, 2005), BPMN (OMG, 2006), and so forth.

As the number of services or processes involved in a business process grows, the complexity of
developing and maintaining the business processes also increases along with the number of invocations
and data exchanges. Therefore, it is error-prone and time consuming for developers to work with large
business processes that comprise numerous concerns. This problem occurs because business process
descriptions integrate various concerns of the process, such as the process control flow, the data
dependencies, the service invocations, fault handling, etc. In addition, this problem also occurs at
different abstraction levels. For instance, the business process is relevant for different stakeholders:

Business experts require a high-level business-oriented understanding of the various process elements
(e.g., the relations of processes and activities to business goals and organization units), whereas the
technical experts require the technical details (e.g., deployment information or communication protocol
details for service invocations).

Besides such complexity, business experts and technical experts alike have to deal with a constant
need for change. On the one hand, process-driven SOA aims at supporting business agility. That is, the
process models should enable a quicker reaction on business changes in the IT by manipulating business
process models instead of code. On the other hand, the technical infrastructure, for instance, technologies,
platforms, etc., constantly evolves.

One of the successful approaches to manage complexity is separation of concerns (Ghezzi et al.,
1991). Process-driven SOAs use modularization as a specific realization of this principle. Services expose
standard interfaces to processes and hide unnecessary details for using or reusing. This helps in reducing
the complexity of process-driven SOA models. However, from the modelers' point of view, such
abstraction is often not enough to cope with the complexity challenges explained above, because
modularization only exhibits a single perspective of the system focusing on its (de-)composition. Other -
more problem-oriented - perspectives, such as a business-oriented perspective or a technical perspective
(used as an example above), are not exhibited to the modeler. In the field of software architecture,
architectural views have been proposed as a solution to this problem. An architectural view is a
representation of a system from the perspective of a related set of concerns (IEEE, 2000). The
architectural view concept offers a separation of concerns that has the potential to resolve the complexity
challenges in process-driven SOAs, because it offers more tailored perspectives on a system, but it has not
yet been exploited in process modeling languages or tools.

We introduce in this chapter a view-based approach inspired by the concept of architectural views for
modeling process-driven SOAs. Perspectives on business process models and service interactions - as the
most important concerns in process-driven SOA - are used as central views in the view-based approach.
This approach is extensible with all kinds of other views. In particular, the approach offers separated
views in which each of them represents a certain part of the processes and services. Some important
views are the collaboration view, the information view, the human interaction view and the control flow
view. These views can be separately considered to get a better understanding of a specific concern, or
they can be merged to produce a richer view or a thorough view of the processes and services.

Technically, the aforementioned concepts are realized using the model-driven software development
(MDSD) paradigm (Völter and Stahl, 2006). We have chosen this approach to integrate the various view
models into one model, and to automatically generate platform-specific or executable code in BPEL (IBM
et al., 2003), WSDL (W3C, 2001) and XML Schema (W3C, 2001). In addition, MDSD is also used to
separate the platform-specific views from the platform-neutral and integrated views, so that business
experts do not have to deal with platform-specific details. The code generation process is driven by model
transformations from relevant views into executable code.

This chapter starts by introducing some basic concepts and an overview of the view-based modeling
framework. Then we give deeper insight into the framework which is followed by a discussion of view
development mechanisms such as view extension, view integration and code generation mechanisms. A
simple case study, namely, a Shopping process, is used to illustrate the realization of the modeling
framework concepts. The chapter concludes with a discussion to summarize the main points and to
broaden the presented topics with some outlooks.

OVERVIEW OF THE MODELING FRAMEWORK

In this section, we briefly introduce the View-based Modeling Framework (VbMF) which utilizes the
MDSD paradigm. VbMF comprises modeling elements such as a meta-model, view models, and view
instances (see Figure 1). In VbMF, a view (or a model) is a representation of a process from the
perspective of related concerns. Each view instance comprises many relevant elements and relationships
among these elements. The appearance of view elements and their relationships are precisely specified in
a view model that the view must conform to. A view model, in turn, conforms to the meta-model at layer
M2. We devise a simple meta-model, which is based on the meta-model of the Eclipse Modeling
Framework (Eclipse EMF, 2006), as the cornerstone for the modeling framework. The framework view
models are developed on top of that meta-model.

Meta-Model

Core Model

instance-of

Control-Flow
View Model

Collaboration
View Model

Information
View Model

Transaction
View Model

Human
View Model

Data
View Model

extends extends extends extends extends extends

M2

BPEL
Control-Flow
View Model

BPEL
Collaboration
View Model

BPEL
Information
View Model

BPEL
Transaction
View Model

BPEL4People
WS-HumanTask

View Model

Hibernate
Data

View Model

extends extends extends extends extends extends

M1

M0
View Instance

instance-of instance-of instance-of instance-ofinstance-of

Schematic Recurring
Code

generated-from

instance-of

Figure 1 Layered architecture of View-based Modeling Framework

In our approach, we categorize distinct activities - in which the modeling elements are manipulated

(see Figure 2):
• Design activities define new architectural view instances or new view models. This kind of activity

includes Extension activities which create a new view model by adding more features to an
existing view model.

• Integration activities are done by the View Integrator to combine view instances to produce a richer
view or a thorough view of a business process.

• Transformation activities are performed by the Code Generator to generate executable code from
one or many architectural views.

• Interpretation activities are used to extract relevant views from existing legacy business process
code.

Code Generator

View Editor

View Model
Editor

View IntegratorView
Interpreter

Process Modeling
Language Syntax &

Semantic

View
Instance

View Model

Process Descriptions
(BPEL, WSDL, XML

Schema, etc.)

Schematic
Executable

Code

based on

designs/extends

generated from

designs
based on

based on

defined in

uses

based on

generates

uses

produces

Bottom-up Approach Top-down Approach

Figure 2 Top-down and bottom-up approach in View-based Modeling Framework

Before generating outputs, the View Integrator validates the conformity of the input views against
corresponding view models. Extension and Integration are the most important activities used to extend
our view-based model-driven framework toward various dimensions. Existing view models can be
enhanced using the extension mechanisms or can be merged using the integration mechanisms as
explained in the subsequent sections.

VIEW-BASED MODELING FRAMEWORK
A typical business process comprises various concerns that require support of modeling approaches. In
this chapter we firstly examine basic process concerns such as the control flow, data handling and
messaging, and collaboration (see Figure 3). However, the view-based modeling framework is not just
bound to these concerns. The framework is fully open and extensible such that other concerns, for
instance, transactions, fault and event handling, security, human interaction, and so on, can be plugged-in
using the same approach. In the next sections, we present in detail the formalized representations of
process concerns in terms of appropriate view models along with the discussion of the extensibility
mechanisms Extend and Integrate.

Figure 3 The Core model (left-hand side) and the Control-flow View model (right-hand side)

The Core model
Aiming at the openness and the extensibility, we devise a basic model, called the Core model, as a
foundation for the other view models (see Figure 3). Each of the other view models is defined by
extending the Core model. Therefore, the view models are independent of each other. The Core model is
the place where the relationships among the view models are maintained. Hence, the relationships in the
Core model are needed for view integrations.

The Core model provides a number of important abstract elements: View, Process and Service. Each of
them can be extended further. At the heart of the Core model is the View element that captures the
architectural view concept. Each specific view (i.e., each instance of the View element) represents one
perspective on a particular Process. A Service specifies external functions that the Process provides or
requires. A View acts as a container for modeling elements representing the objects which appear inside
the Process. Different instances of each of these elements can be distinguished through the features of the
common superclasses NamedElement, defining a name property, and NameSpace, defining an URI and
prefix based namespace identifier.

The view models that represent concerns of a business process are mostly derived from the Core
model. Therefore, these elements of the Core model are important extension points. The hierarchical
structures in which those elements are roots can be used to define the integration points used to merge
view models as mentioned in the description of the integration mechanisms below.

Control-flow View model
The control flow is one of the most important concerns of a SOA process. A Control-flow View
comprises many activities and control structures. The activities are process tasks such as service
invocations or data handling, while control structures describe the execution order of the activities to
achieve a certain goal. Each Control-flow View is defined based on the Control-flow View model.

There are several approaches to modeling process control flows such as state-charts, block structures
(IBM et al., 2003), activity diagrams (OMG, 2004), Petri-nets (Aalst et al., 2000), and so on. Despite of
this diversity in control flow modeling, it is well accepted that existing modeling languages share five

common basic patterns: Sequence, Parallel Split, Synchronization, Exclusive Choice, and Simple Merge
(Aalst et al., 2003). Thus, we adopted these patterns as the building blocks of the Control-flow View
model. Other, more advanced patterns can be added later by using extension mechanisms to augment the
Control-flow View model. We define the Control-flow View model and semantics of the control
structures with respect to these patterns (see Table 1).

Structure Description

Sequence
An activity is only enabled after the completion of another activity in the same
sequence structure. The sequence structure is therefore equivalent to the semantics of
the Sequence pattern.

Flow

All activities of a flow structure are executed in parallel. The subsequent activity of the
flow structure is only enabled after the completion of all activities in the flow structure.
The semantics of the flow structure is equivalent to a control block starting with the
Parallel Split pattern and ending by the Synchronization pattern.

Switch

Only one of many alternative paths of control inside a switch structure is enabled
according to a condition value. After the active path finished, the process continues
with the subsequent activity of the switch structure. The semantics of the switch
structure is equivalent to a control block starting with the Exclusive Choice pattern and
ending by the Simple Merge pattern.

Table 1: Semantics of basic control structures

The primary entity of the Control-flow View model is the Activity element (see Figure 3), which is the
base class for other elements such as Sequence, Flow, and Switch. Another important entity in the
Control-flow View model is the SimpleActivity class that represents a concrete action such as a service
invocation, a data processing task, and so on. The actual description of each SimpleActivity is modeled in
another specific view. For instance, a service invocation is described in a Collaboration View, while a
data processing action is specified in an Information View. Each SimpleActivity is a placeholder or a
reference to another activity, i.e., an interaction or a data processing task. Therefore, every SimpleActivity
becomes an integration point that can be used to merge a Control-flow View with an Information View,
or with a Collaboration View, respectively.

The StructuredActivity element is an abstract representation of a group of related activities. Some of
these activities probably have logical correlations. For instance, a shipping activity must be subsequent to
an activity receiving purchase orders. The Link element is used in such scenarios.

Collaboration View model
A business process is often developed by composing the functionality provided by various parties such as
services or other processes. Other partners, in turn, might use the process. All business functions required
or provided by the process are typically exposed in terms of standard interfaces (e.g., WSDL portTypes).
We captured these concepts in the Core model by the relationships between the two elements Process and
Service. The Collaboration View model (see Figure 4) extends the Core model to represent the
interactions between the business process and its partners.

Figure 4 The Collaboration View model (left-hand side) and the Information View model (right-hand side)

In the Collaboration View model, the Service element from the Core model is extended by a tailored
and specific Service element that exposes a number of Interfaces. Each Interface provides some
Operations. An Operation represents an action that might need some inputs and produces some outputs
via correspondent Channels. The details of each data element are not defined in the Collaboration View
but in the Information View. A Channel only holds a reference to a Message entity. Therefore, each
Message becomes an integration point that can be used to combine a specific Collaboration View with a
corresponding Information View.

The ability and the responsibility of an interaction partner are modeled by the Role element. Every
partner, who provides the relevant interface associated with a particular role, can play that role. These
concepts are captured by using the PartnerLink and the PartnerLinkType elements and their relationships
with the Role element. An interaction between the process and one of its partners is represented by the
Interaction element that associates with a particular PartnerLink.

Information View model
The third basic concern we consider in the context of this chapter is information. This concern is
formalized by the Information View model (see Figure 4). This view model involves the representation of
data object flows inside the process and message objects traveling back and forth between the process and
the external world.

In the Information View model, the BusinessObject element, which has a generic type, namely, Type,
is the abstraction of any piece of information, for instance, a purchase order received from the customer
or a request sent to a banking service to verify the customer's credit card, and so forth. Each Information
View consists of a number of BusinessObjects. Messages exchanged between the process and its partners
or data flowing inside the process might go through some Transformations that convert or extract existing
data to form new pieces of data. The transformations are performed inside a DataHandling object. The
source or the target of a certain transformation is an ObjectReference entity that holds a reference to a
particular BusinessObject.

Human View model
So far we have examined different perspectives of a business process such as the control flow, the
interaction with external process elements as described in the Collaboration View and the Information
View. These essential views allow the specification of automated processes. If we are interested in
processes that can be automated and that do not require human interaction, we may use these views for

designing various processes. However, business processes often involve human participants. Certain
process activities need appropriate human interactions. We name such process elements Tasks. Tasks,
thus, are simple process activities that are accomplished by a person. Tasks may specify certain input
values as well as a Task Description and may yield a result that can be represented using output values.

Besides the task as a special process element, the Human View as shown in Figure defines human
roles and their relationships to the respective process and tasks. Roles are abstracting concrete users that
may play certain roles. The Human View thus establishes a role-based abstraction. This role-based
abstraction can be used for role-based access control (RBAC). RBAC, in general, is administered through
roles and role hierarchies that mirror an enterprise’s job positions and organizational structure. Users are
assigned membership into roles consistent with a user’s duties, competency, and responsibility.

Figure 5 The Human View model

Examples for different roles are: Task Owner, Process Supervisor or Escalation Recipient. By binding,
for instance, the role of a Process Supervisor to a process, RBAC can define that those users that are
associated with this role may monitor the process execution. Similarly, the owner of a task may complete
the task by sending results back to the process. He may however not follow up the process.
We can specify an activity as defined within a Control-flow View to be a human Task in the Human View
that is bound to for instance an owner, the person who performs the task. Likewise, process stakeholders
can be specified for the process by associating them with the human view.

Extension mechanisms
During the process development lifecycle, various stakeholders take part in with different needs and
responsibility. For instance, the business experts - who are familiar with business concepts and methods -
sketch blueprint designs of the business process functionality using abstract and high level languages such
as flow-charts, BPMN diagrams, or UML activity diagrams. Based on these designs, the IT experts
implement the business processes using executable languages such as BPEL, XPDL, etc. Hence, these
stakeholders work at different levels of abstraction.

The aforementioned view models for the Control-flow, the Collaboration and the Information Views
are the cornerstones to create abstract views. These abstract views aim at representing the high level,
domain-related concepts, and therefore, they are useful for the business experts. According to the specific
requirements on the granularity of the views, we can gradually refine these views toward more concrete,
platform- or technology- specific views using the extension mechanisms.

A view refinement is performed by, firstly, choosing adequate extension points, and consequently,
applying extension methods to create the resulting view. An extension point of a certain view is a view’s
element which is enhanced in another view by adding additional features (e.g., new element attributes, or

new relationships with other elements) to form a new element in the corresponding view. Extension
methods are modeling relationships such as generalization, extend, etc., that we can use to establish and
maintain the relationships between an existing view and its extension. For instance, the Control-flow
View, Collaboration View, and Information View models are mostly extensions of the Core model using
the generalization relationship. We demonstrate the extensibility of the Collaboration View model by an
enhanced view model, namely, the BPEL Collaboration View model (see Figure 6). Similar BPEL-
specific view model extensions have also been developed for the Information View and the Control-flow
View (omitted here for space reasons).

Figure 6 BPEL-specific extension of the Collaboration View
In the same way, more specific view models for other technologies can be derived. In addition, other

business process concerns such as transactions, event handling, and so on, can be formalized by new
adequate view models derived from the basic view model using the same approach as used above.

Integration mechanisms

In our approach, the Control-flow View - as the most important concern in process-driven SOA - is
often used as the central view. Views can be integrated via integration points to provide a richer view or
a thorough view of the business process. In the scope of this chapter, we utilize named-based matching
mechanism for integrating views. This mechanism is effectively used at the view level (or model level)
because from a modeler's point of view, it makes sense and is reasonable to give the same name to the
modeling entities that pose the same functionality and semantics. However, other view integration
approaches such as those using class hierarchical structures or ontology-based structures are applicable in
the view-based modeling framework.

Model transformations
There are two basic types of model transformations: model-to-model and model-to-code. A model-to-
model transformation maps a model conforming to a given meta-model to another kind of model
conforming to another meta-model. Model-to-code, so-called code generation, produces executable code
from a certain model. In the view-based modeling framework, the model transformations are mostly

model-to-code that take as input one or many views and generate codes in executable languages, for
instance, Java, BPEL/WSDL, and so on. In the literature, numerous code generation techniques are
described, such as the combination of templates and filtering, the combination of template and meta-
model, inline generation, or code weaving (Völter and Stahl, 2006). In our prototype, we used the
combination of template and meta-model technique which is realized in the openArchitectureWare
framework (oAW, 2002) to implement the model transformations. But any other of above-mentioned
techniques could be utilized in this framework with reasonable modifications as well.

CASE STUDY
To demonstrate the realization of the aforementioned concepts, we explain a simple but realistic case
study, namely, a Shopping process.

The Shopping process
The Shopping process is initiated when a certain customer issues a purchase order. The purchase order is
retrieved via the ReceiveOrder activity. The process then contacts the Banking service to validate the
credit card information through the VerifyCreditCard activity. The Banking service only needs some
necessary information such as the owner's name, owner's address, card number, and expiry date. The
process performs a preparation step, namely, PrepareVerify, which extracts such information from the
purchase order. A preparation step is often executed before an interaction on the process takes place in
order to arrange the needed input data for the interaction. After validating the customer's credit card, the
control flow is divided into two branches according to the validation result. In case a negative
confirmation is issued from the Bank service, e.g., because the credit card is invalid, the customer will
receive an order cancellation notification along with an explaining message via the CancelOrder activity.
Otherwise, a positive confirmation triggers the second control branch in which the process continues with
two concurrent activities: DoShipping and DoCharging. The DoShipping activity gets delivery
information from the purchase order and sends ordered products to the customer’s shipping address, while
the DoCharging activity sends a request to the Banking service for the credit card's payment. Finally, the
purchase invoice is prepared and sent back to the customer during the last step, SendInvoice. After that,
the Shopping process successfully finishes.

Figure 7 shows the Shopping process developed using BPEL. VbMF can manage several important
process concerns, for example, the control flow and service collaboration, data handling, fault and event
handling, and transactions. For the demonstration purpose, in this chapter we only examine the control
flow and service collaborations of the Shopping process. Therefore, in Figure 7, we present appropriate
BPEL code and omit irrelevant parts.

<?xml version="1.0" encoding="UTF-8"?>
<bp:process name="Shopping"
 xmlns="http://www.shopping.com/"
 xmlns:shop="http://www.shopping.com/"
 xmlns:bank="http://www.banking.com/"
 xmlns:ship="http://www.shipping.com/"
 xmlns:bp="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <bp:partnerLinks>
 <bp:partnerLink name="Seller"
 partnerLinkType="shop:SellerPLT" myRole="Seller" />
 <bp:partnerLink name="Approver" partnerRole="Approver"
 partnerLinkType="shop:ApproverPLT" />

 <bp:partnerLink name="Payer" partnerRole="Payer"
 partnerLinkType="shop:PayerPLT" />
 <bp:partnerLink name="ShippingPartner" partnerRole="ShippingPartner"
 partnerLinkType="shop:ShippingPartnerPLT" />
 </bp:partnerLinks>

 <bp:variables>
 <bp:variable name="order_input" messageType="shop:PurchaseOrder" />
 <bp:variable name="order_output" messageType="shop:OrderResponse" />
 <bp:variable name="verify_input" messageType="bank:VerifyRequest" />
 <bp:variable name="verify_output" messageType="bank:VerifyResponse" />
 <bp:variable name="charge_input" messageType="bank:ChargeRequest" />
 <bp:variable name="charge_output" messageType="bank:ChargeResponse" />
 <bp:variable name="ship_input" messageType="ship:ShippingRequest" />
 <bp:variable name="ship_output" messageType="ship:ShippingResponse" />
 </bp:variables>

 <bp:sequence>
 <bp:receive name="ReceiveOrder"
 variable="order_input"
 partnerLink="Seller"
 portType="shop:Shopping"
 operation="doShopping"
 createInstance="yes" />
 <bp:assign name="PrepareVerify">
 <bp:copy>
 ...
 </bp:copy>
 </bp:assign>
 <bp:invoke name="VerifyCrediCard"
 inputVariable="verify_input"
 outputVariable="verify_output"
 partnerLink="Approver"
 portType="bank:CreditCard"
 operation="verifyCreditCard" />
 <bp:switch>
 <bp:case condition="condition">
 <bp:sequence>
 <bp:assign name="PrepareCancel">
 <bp:copy>
 ...
 </bp:copy>
 </bp:assign>
 <bp:reply name="CancelOrder"
 variable="order_output"
 partnerLink="Seller"
 portType="shop:Shopping"
 operation="doShopping" />
 </bp:sequence>
 </bp:case>
 <bp:otherwise>
 <bp:sequence>
 <bp:flow>
 <bp:sequence>
 <bp:assign name="PrepareShipping">
 <bp:copy>
 ...
 </bp:copy>
 </bp:assign>
 <bp:invoke name="DoShipping"
 inputVariable="ship_input"
 outputVariable="ship_output"
 partnerLink="ShippingPartner"

 portType="ship:Shipping"
 operation="doShipping" />
 </bp:sequence>
 <bp:sequence>
 <bp:assign name="PrepareCharging">
 <bp:copy>
 ...
 </bp:copy>
 </bp:assign>
 <bp:invoke name="DoCharging"
 inputVariable="charge_input"
 outputVariable="charge_output"
 partnerLink="Payer"
 portType="bank:CreditCard"
 operation="chargeCreditCard" />
 </bp:sequence>
 </bp:flow>
 <bp:assign name="PrepareInvoice">
 <bp:copy>
 ...
 </bp:copy>
 </bp:assign>

 <bp:reply name="SendInvoice"
 variable="order_output"
 partnerLink="Seller"
 portType="shop:Shopping"
 operation="doShopping" />
 </bp:sequence>
 </bp:otherwise>
 </bp:switch>
 </bp:sequence>
</bp:process>

Figure 7 Case study - the Shopping process developed using BPEL language

In the next paragraphs, we present an illustrative case study by the following steps. Firstly, the
architectural views of the Shopping process are designed based on our view models and the sample
extensions for BPEL constructs presented in the previous sections. These views are presented using the
Eclipse Tree-based Editor (Eclipse EMF, 2006). Secondly, some views are integrated to produce a richer
perspective. And finally, these views are used to generate executable code in WS-BPEL and WSDL that
can be deployed into a BPEL engine.

View development
Figure 8 shows the Control-flow View instance of the Shopping process. There are no details of data
exchanges or service communication in this view. Hence, the Control-flow View can be used by the
stakeholders who need a high level of abstraction, for instance, the business experts or the domain
analysts.

Figure 8 The Control-flow View (left-hand side) and an integrated view of the Shopping process – the
result of integration the Control-flow View and the Collaboration View (right-hand side).

Moreover, using the extension view models (e.g., the BPEL-specific extension of the Collaboration
View given in Figure 6), the technical experts or the IT developers can develop much richer views for a
particular concern. In Figure 9, there are two models side by side in which one is the abstract
collaboration model (i.e., the left-hand side view in Figure 9) and another one, which is at the right-hand
side in Figure 9, is a view based on the BPEL Collaboration view model.

View integration
The views also can be integrated to produce new richer views of the Shopping process. At the right-hand
side of Figure 9, we present an integrated view which is the result of the combination of the Control-flow
View and the Collaboration View of the Shopping process. The SimpleActivity entities in the Control-
flow View define the most important integration points with relevant Interaction entities in the
Collaboration view. The output view consists of control structures based on the Control-flow View and

additional collaboration-related entities such as Roles, Services, etc. Moreover, relevant activities of this
view also comprise additional collaboration-specific attributes.

Figure 9 The Collaboration View (left-hand side) and the corresponding BPEL-specific extension view of
the Collaboration View (right-hand side) of the Shopping process.

Code generation

After developing appropriate views for the Shopping process, we use illustrative template-based
transformations to generate executable code for the process in BPEL and a service description in WSDL
that represents the provided functions in terms of service interfaces. The modeling framework's models
and Shopping process's models are EMF Ecore models (Eclipse EMF, 2006). We used the oAW's Xpand
language (oAW, 2002) to define the code generation templates (see Figure 10).

Template for the main process

«DEFINE BPEL(core::View iv, core::View cv) FOR core::View»
«FILE process.name+".bpel"»
<?xml version="1.0" encoding="UTF-8"?>
<process name="«name»"
 «EXPAND Namespace FOR cv»
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 «EXPAND Control(iv, cv) FOR this»
</process>
«ENDFILE»
«ENDDEFINE»

Template for the control structures

«DEFINE Control(core::View iv, core::View cv) FOR core::View»
 «LET getActivities(this) AS activities»
 «IF (activities != null && activities.size > 1)»
 <sequence>
 «EXPAND Activity(iv, cv) FOREACH activities»
 </sequence>
 «ELSEIF (activities != null && activities.size > 0)»
 «EXPAND Activity(iv, cv) FOREACH activities»
 «ENDIF»
 «ENDLET»
«ENDDEFINE»

Template for generating code from the SimpleActivity of a Control-flow View
Use named-based to integrate an appropriate SimpleActivity with an Interaction
entity in a BPEL CollaborationView

«DEFINE Activity(core::View iv, core::View cv) FOR orchestration::SimpleActivity»
 «EXPAND SimpleActivity(iv, cv) FOR getActivityByName(name, iv, cv)»
«ENDDEFINE»

Template for generating code from the Invoke activity

«DEFINE SimpleActivity(core::View iv,core::View cv) FOR bpelcollaboration::Invoke»
 <invoke name="«name»"
 «IF (in != null)»
 inputVariable="«getInput().name»"
 «ENDIF»
 «IF (out != null)»
 outputVariable="«getOutput().name»"
 «ENDIF»
 partnerLink="«partnerLink.name»"
 portType="«getRole().interface.name»"
 operation="«getOperation(getInterface(getRole())).name»"/>
«ENDDEFINE»

Template for generating code from the Receive activity

«DEFINE SimpleActivity(core::View iv,core::View cv) FOR bpelcollaboration::Receive»
 <receive name="«name»"
 «IF (variable != null)»
 variable="«getVariable().name»"
 «ENDIF»
 «IF (createInstance != null) »
 createInstance="«createInstance»"
 «ENDIF»
 partnerLink="«partnerLink.name»"
 portType="«getRole().interface.name»"
 operation="«getOperation(getInterface(getRole())).name»"/>
«ENDDEFINE»

Template for generating code from the Reply activity

«DEFINE SimpleActivity(core::View iv,core::View cv) FOR bpelcollaboration::Reply»
 <reply name="«name»"
 «IF (variable != null)»
 variable="«getVariable().name»"
 «ENDIF»
 partnerLink="«partnerLink.name»"
 portType="«getRole().interface.name»"
 operation="«getOperation(getInterface(getRole())).name»"/>
«ENDDEFINE»
Figure 10 Templates in oAW’s Xpand language for generating BPEL code from the Control-flow View
and the BPEL-specific extension of the Collaboration View

We present a model transformation (aka code generation) snippet in oAW's Xpand language that
generates executable code in BPEL language for activities such as Invoke, Receive and Reply using the
BPEL-specific extension view given in Figure 3. The resulting executable code in BPEL and WSDL has
been successfully deployed on the Active BPEL Engine (Active Endpoints, 2006).

CONCLUSION
Existing modeling approaches lack sufficient support to manage the complexity of developing large
business processes with many different concerns because most of them consider the process model as a
whole. We introduced in this chapter a view-based framework that precisely specifies various concerns
of the process model and uses those models to capture a particular perspective of the business process. It
not only helps to manage the development complexity by the separation of a business process's concerns,
but also to cope with both business and technical changes using the separation of levels of abstraction.
The proposed modeling framework can possibly be extended with other concerns of the business process
such as security, event handling, etc., to cover all relevant concepts and process development
technologies.

Acknowledgement. We would like to thank anonymous reviewers who provide useful feedback on an
earlier draft of this chapter. This work was supported by the European Union FP7 project COMPAS,
grant no. 215175.

SUGGESTED ADDITIONAL READING

There are several standardization efforts for process modeling languages, such as BPEL (IBM et al.,
2003), BPMN (OMG, 2006), XPDL (WfMC, 2005), and so on. They can be categorized into different
dimensions, for instance, textual and graphical languages, or abstract and executable languages. Most of
these modeling languages consider the business process model as a whole, and therefore, do not support
the separation of the process model's concerns. All these modeling languages can be integrated into the
view-based modeling approach using extension models.

The concept of architectural views (or viewpoints) has potential of dealing with software development
complexity, and therefore, is well-known in literature, for instance, the Open Distributed Processing
Reference Model proposed in ISO (1998), or UML modeling language specified in UML (2003), to name
a few. However, this concept has not been exploited in the field of business process development, and
particularly, in process-driven SOA modeling. Axenath et al., (2005) present the Amfibia framework as
an effort on formalizing different aspects of business process modeling, and propose an open framework
to integrate various modeling formalisms through the interface concept. Akin to the approach presented in
this chapter, Amfibia has the main idea of providing a modeling framework that does not depend on a
particular existing formalism or methodology. The major contribution in Amfibia is to exploit dynamic
interaction of those aspects. Therefore, the distinct point to VbMF is that in Amfibia the interaction of
different “aspects” is only performed by event synchronization at run-time when the workflow
management system executes the process. Using extension and integration mechanisms in VbMF, the
integrity and consistency between models can be verified earlier at design time.

In this chapter, we also exploit the model-driven software development (MDSD) paradigm, which is
widely used to separate platform-independent models from platform-specific models, to separate different
levels of abstraction in order to provide appropriate adapted and tailored views to the stakeholders. Völter
and Stahl (2006) provide a bigger, thorough picture about this emerging development paradigm in terms
of the basic philosophy, methodology and techniques as well. Through this book, readers achieve helpful
knowledge on basic terminologies such as meta-modeling, meta-meta-model, meta-model, model,
platform-independent and platform-specific models, and modeling techniques such as model
transformation, code generation as well.

Human interaction with SOAs have lately been formalized in The WS-BPEL Extension for People
(BPEL4People) (Agrawal et al., 2007b). BPEL4People defines a peopleActivity as a new BPEL
extensionActivity and thus realizes integration of human process activities into BPEL processes.
BPEL4People is based on the WS-HumanTask specification that introduces formal definition of human
tasks. Various roles for processes and tasks are defined in BPEL4People as well as WS-HumanTask that
users can be assigned to for role-based access control.

REFERENCES
Aalst, W. van der, Desel, J., & Oberweis, A. (Eds.). (2000). Business process management: Models,
techniques, and empirical studies - Lecture Notes in Computer Science (Vol. 1806). Springer-Verlag.

Aalst, W. van der, Hofstede, A. H. M. ter, Kiepuszewski, B., & Barros, A. P. (2003). Workflow patterns.
Distributed and Parallel Databases, 14 (1), 5–51.

Active Endpoints (2006). ActiveBPEL Open Source Engine. http://www.active-endpoints.com.

Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König, D., Leymann, F., Müller,
R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen, A., Rowley, M., Schmidt, P., Trickovic, I., Yiu,
A., & Zeller, M. (2007a). Web Services Human Task (WS-HumanTask), Version 1.0.
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf.

Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König, D., Leymann, F., Müller,
R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen, A., Rowley, M., Schmidt, P., Trickovic, I., Yiu,
A., & Zeller, M. (2007b). WS-BPEL Extension for People (BPEL4People), Version 1.0.
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf.

Axenath, B., Kindler, E., & Rubin, V. (2005). An open and formalism independent meta-model for
business processes. In Proc. of the Workshop on Business Process Reference Models (pp. 45–59).

Eclipse EMF. (2006). Eclipse Modeling Framework. http://www.eclipse.org/emf/.

Ferraiolo, D., Barkley, J., & Kuhn, D. R.. (1999). A role-based access control model and reference
implementation within a corporate intranet. ACM Transactions on Information and System Security
(TISSEC), 2(1), 34-64.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (1991). Fundamentals of Software Engineering. Prentice Hall

Hentrich, C., & Zdun, U. (2006). Patterns for Process-oriented integration in Service-Oriented
Architectures. In Proc. of 11th European Conference on Pattern Languages of Programs (EuroPLoP’06).
Irsee, Germany.

IBM, Systems, Microsoft, SAP AG, & Systems Siebel. (2003). Business Process Execution Language for
Web services. ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

IEEE. (2000). Recommended Practice for Architectural Description of Software Intensive Systems (Tech.
Rep. No. IEEE-std-1471-2000). IEEE.

ISO. (1998). Open Distributed Processing Reference Model (IS 10746). http://isotc.iso.org/.

oAW. (2002) openArchitectureWare Project. http://www.openarchitectureware.org.

OMG. (2004). Unified Modelling Language 2.0 (UML). http://www.uml.org

OMG. (2006). Business Process Modeling Notation (BPMN). http://www.bpmn.org

Völter, M. & Stahl, T. (2006). Model-Driven Software Development: Technology, Engineering,
Management. Wiley.

W3C. (2001). Web Services Description Language 1.1. http://www.w3.org/TR/wsdl

W3C. (2001). XML Schema Part 1: Structures http://www.w3.org/TR/xmlschema-1/ and Part 2:
Datatypes http://www.w3.org/TR/xmlschema-2/

WfMC. (2005). XML Process Definition Language (XPDL). http://www.wfmc.org/standards/XPDL.htm

KEY TERMS
Architectural view: a view is a representation of a whole system from the perspective of
a related set of concerns (IEEE, 2000)
Service Oriented Architecture (SOA): an architectural style in which software
components or software systems operate in a loosely-coupled environment, and are
delivered to end-users in terms of software units, namely, services. A service provides a
standard interface (e.g., service interfaces described using WSDL), and utilizes message
exchange as the only communication method.

Separation of concerns: the process of breaking a software system into distinct pieces
such that the overlaps between those pieces are as little as possible, in order to make it
easier to understand, to design, to develop, to maintain, etc., the system.
Business process modeling: Business Process Modeling (BPM) is the representation of
current ("as is") and proposed ("to be") enterprise processes, so that they may be
compared and contrasted. By comparing and contrasting current and proposed
enterprise processes business analysts and managers can identify specific process
transformations that can result in quantifiable improvements to their businesses
(Business Process Modeling Forum).
Model-driven Software Development (MDSD) or Model-driven Development (MDD): a
paradigm that advocates the concept of models, that is, models will be the most
important development artifacts at the centre of developers’ attention. In MDSD,
domain-specific languages are often used to create models that capture domain
abstraction, express application structure or behavior in an efficient and domain-specific
way. These models are subsequently transformed into executable code by a sequence of
model transformations (Völter and Stahl, 2006).
Model and meta-model: a model is an abstract representation of a system’s structure,
function or behavior. A meta-model defines the basic constructs that may occur in a
concrete model. Meta-models and models have a class-instance relationship: each
model is an instance of a meta-model (Völter and Stahl, 2006)
Model transformation: transformation maps high-level models into low-level models
(aka model-to-model transformations), or maps models into source code, executable
code (aka model-to-code or code generation).
Role-based Access Control (RBAC): Access control decisions are often based on the
roles individual users take on as part of an organization. A role describes a set of
transactions that a user or set of users can perform within the context of an organization.
RBAC provide a means of naming and describing relationships between individuals and
rights, providing a method of meeting the secure processing needs of many commercial
and civilian government organizations (Ferraiolo et al., 1999).
Web Service Description Language (WSDL): a standard XML-based language for
describing network services as a set of endpoints operating on messages containing
either document-oriented or procedure-oriented information. The operations and
messages are described abstractly, and then bound to a concrete network protocol and
message format to define an endpoint. WSDL is extensible to allow description of
endpoints and their messages regardless of what message formats or network protocols
are used to communicate (W3C, 2001)
Stakeholder: In general, stakeholder is a person or organization with a legitimate
interest in a given situation, action or enterprise. In the context of this chapter,
stakeholder is a person who involved in the business process development at different
levels of abstraction, for instance, the business experts, system analysts, IT developers,
and so forth.

EXERCISES
For the exercises completing this chapter, we are using the following scenario:
At a rescue center rescue missions are controlled. Each emergency call is answered by a co-coordinating
officer and is recorded by the control center system. If not supplied by the caller, the officer asks for the
following information:

• What happened?
• Who is calling? How can the caller be contacted?

• Where did the accident happen?
• How many people are injured?

After the call, the officer assigns a rescue team to the mission and sends a short description together

with the location via, for instance, a Short Data Service (SDS). The rescue team confirms acceptance of
the mission by sending a status code ‘2’. At arrival it notifies the rescue center with status code ‘3’. After
first aid measures, the team prepares to make the patient transportable. When leaving the location the
status code is updated to ‘4’. At the arrival at the hospital with further medical treatment the status is set
to ‘5’. After the team has prepared for standby the rescue center is notified with a status ‘6’.
Beginner

• Describe the human task of receiving an emergency call. What are the in- and outputs and who
may and who may, for example, not perform this task? Define some human roles and describe the
relations between them and human tasks as well as the process.

• Table 1 lists basic patterns for control flow modeling that have been defined in the Control-flow
View meta-model of the VbMF. UML activity diagrams (OMG, 2004) or Petri-nets (Aalst et al.,
2000) are approaches to model process control flows. Transform the textual description of the
rescue mission into a UML activity diagram for representing and visualizing the corresponding
workflow.

Intermediate
• During the rescue mission multiple participants are involved. BPMN diagrams can help to

distinguish these using pools and lanes that represent responsibilities for activities. Identify the
different participants that are involved in the rescue mission and draw a BPMN diagram for the
rescue mission where you group the process elements that are associated with a participant
accordingly.

• Improve the process and provide means for also alerting a fire brigade if necessary. For close
collaboration the process itself invokes an external activity by passing the information of the
rescue operation to the alarm service of the fire brigade.

Advanced
• A company wants to optimize one of its business workflows. Therefore out of a process with

about twenty elements a sub-process containing five process elements is being out-sourced. How
do the process models change? Using the view-based approach, what views do you need to
modify and where do you need to specify additional information?

Practical Exercise
• BPEL is specified on top of WSDL and XSD. Therefore the conceptual views of the VbMF need

to be bound to appropriate syntax. For the Information View e.g. the messages that are being sent
have to be defined in XML schemata. For the example of the rescue mission specify XML
schemata for the messages that are being sent and extend them with chronological information.

	Huy Tran, Ta’id Holmes, Uwe Zdun, Schahram Dustdar
	Distributed Systems Group, Institute of Information Systems
	ABSTRACT
	This chapter introduces a view-based, model-driven approach for process-driven, service-oriented architectures. A typical business process consists of numerous tangled concerns, such as the process control flow, service invocations, fault handling, tr...
	Introduction
	Service-oriented computing is an emerging paradigm that made an important shift from traditional tightly coupled to loosely coupled software development. Software components or software systems are exposed as services. Each service offers its function...
	In this section, we briefly introduce the View-based Modeling Framework (VbMF) which utilizes the MDSD paradigm. VbMF comprises modeling elements such as a meta-model, view models, and view instances (see Figure 1). In VbMF, a view (or a model) is a ...
	Figure 1 Layered architecture of View-based Modeling Framework
	Figure 2 Top-down and bottom-up approach in View-based Modeling Framework
	Aiming at the openness and the extensibility, we devise a basic model, called the Core model, as a foundation for the other view models (see Figure 3). Each of the other view models is defined by extending the Core model. Therefore, the view models a...
	The control flow is one of the most important concerns of a SOA process. A Control-flow View comprises many activities and control structures. The activities are process tasks such as service invocations or data handling, while control structures desc...
	The third basic concern we consider in the context of this chapter is information. This concern is formalized by the Information View model (see Figure 4). This view model involves the representation of data object flows inside the process and message...
	So far we have examined different perspectives of a business process such as the control flow, the interaction with external process elements as described in the Collaboration View and the Information View. These essential views allow the specificati...
	During the process development lifecycle, various stakeholders take part in with different needs and responsibility. For instance, the business experts - who are familiar with business concepts and methods - sketch blueprint designs of the business pr...
	References

