
From Business Application Execution to Design through Model-Based Reporting

Ta‘id Holmes
Software Engineering & Tools

SAP Research, Darmstadt, Germany
taid.holmes@sap.com

Abstract—Cross-disciplinary models constitute essential in-
struments to master complexity. Often it is easier to relate to
high-level concepts than to deal with low-level technical details.
In model-driven engineering (MDE) models are designated
a pivotal role from which systems are generated. As such,
MDE enables different stakeholders of business applications
to participate in the engineering process. Until now however,
MDE does not penetrate phases beyond generation and deploy-
ment such as monitoring, analysis, and reporting. To display
information from runtime and analytics it would be interesting
if reporting could utilize models from design time. Therefore,
this paper presents model-based reporting (MbR). Bridging
the gap between reporting and design, it enables stakeholders
to intuitively specify the reporting through a domain-specific
language (DSL) while accelerating development cycles. In non-
model-driven settings, MbR can help to introduce models as a
first step towards MDE.

Keywords-model-based, reporting, end-to-end, business appli-
cations

I. INTRODUCTION

The collection, preparation, and representation of runtime
information from business applications and enterprise systems
is of particular importance to stakeholders that need to review
and analyze these data. While the use of models is a common
practice for the design of computing systems (cf. [1]) the
runtime usually is not aware of the models from which
systems have been generated (cf. [2], [3]). This however is
problematic when it comes to raise the information from the
execution to higher levels of abstraction such as needed for
stakeholder representation.

Ideally, stakeholders could relate to the same models
during monitoring and reporting. That is, the models would
be enriched with information from the runtime. With this,
developers could directly work with the models in the course
of a new development cycle, i.e., undertake changes in order
to improve a business application. While reducing costs and
risks, this shortens iterative and incremental development
cycles.

Models are cross-disciplinary accepted and applied as
a means to deal with complexity (cf. [4]). A view-based
approach can support various stakeholders while realiz-
ing the separation of concerns (SoC) principle (cf. [5]).
Furthermore, models can be specified and represented at
different abstraction levels making it easier for stakeholders
to relate to the concepts (cf. [6]). Finally, leveraging model-

driven engineering (MDE) (cf. [7]) for the generation of
executable artifacts, technical expertise can be captured
in transformations. Resulting benefits among others are
automation and portability. Traceability, however, of model
elements from design artifacts over different phases of the
lifecycle is often lost, e.g., after a generation step or due
to impractical and disproportional extra efforts in technical
implementations. Thus, model-driven systems usually have no
relation to the models from which they have been generated.
As a consequence, a synchronization with design models of
model-driven enterprise systems and business applications
becomes cumbersome (cf. [8]). Other systems such as legacy
systems are neither at design nor during execution connected
to conceptual models at all. In the few cases where design
time models are also used for the reporting from execution the
implementation is not easily extensible for considering new
types of runtime information, nor does it permit application
to arbitrary models. Being specific to a particular domain
and product, they are often hard coded and neither applicable
in different contexts nor portable to other platforms.

Ideally, it would be possible to always relate to models
during the lifecycle of a business application. For reporting,
it would be particularly interesting to utilize the models
from design time. If information from the runtime could be
directly displayed in these models, a gap between execution
and design would be filled permitting for shorter, incremental
development cycles. Annotated visual models ease the
consumption of reporting data. A developer, for instance,
can more easily relate to the information from the runtime
and can, if required, directly operate on design models for
adaptation and evolution scenarios.

This paper presents model-based reporting (MbR), a
generic, conceptual approach to relate information from the
runtime and business analytics with models for stakeholder
presentation. Visualizing models enriched with reporting
data, it is applicable to graphical domain-specific languages
(DSLs). At the same time, MbR can be applied to different
metamodels. Extensible in regard to the data, it is agnostic
to the reporting domain. Customizable through a DSL, it
permits stakeholders to intuitively specify the reporting. The
application to process models for business process monitoring
is demonstrated in a case study.

The remainder of this paper is structured as follows: In
Section II MbR is motivated in the context of business

applications followed by Section III that addresses the
correlation of execution with models. The MbR approach is
then presented in Section IV. Next, Section V demonstrates
the application to a process model in a case study. After
a discussion in Section VI, the contributions are related to
existing work in Section VII. Finally, Section VIII concludes
the paper.

II. MODEL-BASED REPORTING IN THE CONTEXT OF
BUSINESS APPLICATIONS

In a MDE setting, business applications are specified in
terms of models, generated through model-to-code transfor-
mations, and deployed to the destination platform. At runtime,
information is provided to a business intelligence and stored
in a data warehouse for reporting. Model-based reporting
(MbR) (re)connects reporting data from systems with models
and model elements that reflect these systems. For this, MbR
visualizes reporting data from the runtime, monitoring, and
analytics based on design time models.

Figure 1. Model-based Reporting for Business Applications

An overview of MbR in the context of business applications
is depicted in Figure 1. It displays a developer as a stakeholder
of a business application storing models containing model
elements in a model repository. The business application is
generated and deployed by a model-driven code generator.
During execution, it produces runtime information that is
emitted via events or stored in log messages which are
processed by business analytics. Reporting data, as the result
from the analytics, constitutes the basis for reporting. It
spans a variety of categories such as performance, usage, or
incidents (i.e., exceptions from and violations of the business
application).

Figure 2 displays a common architecture for business
applications in regard to a business intelligence. The left
part shows online monitoring through events and the right
part offline analysis through log messages. The paths are not
dependent on each other but serve independently to obtain
results for a subsequent reporting. Results from business
analysis through monitoring or mining and extract, transform,
and load (ETL) data transformations are stored in a data
warehouse that is utilized by reporting.

Figure 2. Architectural Overview for Business Applications

MbR can build on a business intelligence and fully benefit
from its business analytics. In such cases stakeholders can
be provided with highly relevant calculated data and metrics
such as key performance indicators (KPIs). Nevertheless, the
only prerequisite for MbR really is that information (coming
from any source such as a business intelligence or from a
system directly) can be correlated with model elements as
discussed next.

III. CORRELATION OF EXECUTION WITH MODELS

An assumption for the MbR approach, as presented in this
paper and explained in the next section, is a correlation of
execution with models and model elements. For maximum
flexibility such correlation should be established through
dynamic resolution. That is, for a given model element
(resp. point in execution) a set of execution points (resp.
model elements) shall be returned by a correlation service.
Table I lists operations of a correlation service for managing
correlation entries in the data warehouse.

Table I
CORRELATION SERVICE

Return Type Operation Parameter
executionID[] getEIDs modelElementID
modelElementID[] getMIDs executionID
boolean register executionID, modelElementID
boolean unregister executionID, modelElementID

For reference, execution points within the business appli-
cation shall uniquely be identifiable by an executionID 1.
Usually, the runtime environment internally provides trace-
ability; yet, executionIDs need to be known outside of
execution for the correlation with model elements. In order
to track an execution instance an instanceID is required
furthermore. Thus, a business application needs to disclose
traceability information when emitting events and sending
or writing log messages or database entries so that these
identifiers can be determined and supplied to the reporting.
Integrated into the business intelligence, the MbR service
(see Section IV-C) can then relate the information from the
runtime to the models using the correlation entries.

Although the unique identification might not take the
form of a Universally Unique Identifier [9] (UUID), it is
established in business applications with business relevant
records and documents that need to be related to suppliers,
vendors, and customers. To the degree built-in processes
can be reconstructed, it is possible to establish correlation
of execution points with models. Business applications that
are model-driven can be instructed automatically with such
identifiers and the granularity of instructions can be varied
more easily. Also the correlation entries for the models and
model elements can be generated. Finally, it shall be possible
to ”register” model elements. This is particularly useful when
new models provide additional views on the system. These
models can then be utilized for view-based model-based
reporting.

IV. APPROACH & ARCHITECTURE

The proposed MbR approach comprises a metamodel for
reporting data, a DSL for specifying the reporting, and a
backend service. This service is invoked by the reporting
frontend with a MbR DSL script. Relating to concepts of
the reporting data metamodel, the script is processed by the
MbR runtime. It retrieves reporting data and associates it with
model elements. Such abstract annotations of model elements
are finally transformed into concrete model annotations for
the MbR frontend. An overview of the architecture with
its components as explained in the following is depicted in
Figure 3.

1This can be accomplished by using a model repository such as the
Model-Aware Service Environment [3] (MORSE) repository that generates
and registers unique identifiers for model elements.

Figure 3. Model-Based Reporting — Architectural Overview

A. Reporting Data Metamodel

In selection and evaluation expressions, the MbR DSL
relates to reporting data as residing in the data warehouse.
In order to facilitate queries and for raising the abstraction
to a technology and platform independent level, a reporting
metamodel describes the data for the reporting. From this
customizable and extensible metamodel the database for
the MbR is generated in the data warehouse. The model-
driven reporting database is a target of business analytics
applications that populate it with reporting data (not the focus
of this paper).

Figure 4 displays an excerpt of the metamodel
comprising the concepts of ExecutionPoint and
ExecutionInstance containing executionID and
instanceID (see Section III) properties respectively. In the
metamodel, runtime information is generically captured as
ContextData.

Figure 5 depicts some dimensions such as temporal,
locative, or user context data. In addition to such data, the
reporting data metamodel comprises also the more prominent
concepts of Requirements and ComplianceResults with
Violations. Thus, ExecutionPoints can be associated
with requirements from requirements engineering (RE) and
compliance results such as violations that occur during
runtime, as evaluated and identified by monitoring, are
related to ExecutionInstances for model-based reporting.
Addressing business application compliance (cf. [10]), MbR

Figure 4. Reporting Data Metamodel

Figure 5. Runtime Context Data Metamodel

can utilize compliance relevant data as first-class entities and,
e.g., highlight violations in reports.

The DSL relates to the reporting data using query expres-
sions according to the metamodel. Thus, the metamodel can
be considered for code completion and syntax checking. In
addition to the names of classes and properties as found
in the metamodel, alias names can be used for brevity in
the DSL. The MbR service transforms the high-level and
platform independent query expressions to low-level and
technology specific Structured Query Language (SQL) code.

B. A DSL for Specifying the Reporting

The MbR DSL is at the heart of the approach. From
a technical point of view it enriches models and model-
elements with reporting data. From a conceptual point of
view it enables stakeholders to specify the reporting in a
tailored way. As such, the language comprises features to
select runtime information from execution instances, combine
it with the model for the model-based reporting, and specify
its visualization. A MbR DSL script consists of four parts

(explained next). The simplified grammar 2 is shown in
Listing 1.

As a textual DSL, the scripts can be displayed, reviewed,
and possibly stated by stakeholders in a comprehensive
manner. Yet, the MbR frontend should provide a graphical
DSL in addition so that end-users are not confronted with
textual DSL scripts that operate in the background in between
the frontend and the MbR service.

1 MbRscript =
2 { ModelAssignment }
3 { InstanceSetAssignment }
4 { Annotation }
5 { Formatting };

Listing 1. Syntax of a MbR Script

1) Model Selection: The first part (see Listing 2) merely
serves to select a model for the model-based reporting and
thus to define its context. For this a unique identifier such
as a UUID of the model can be used. If models have been
assigned names and if these names are unique across all
models, also the name of the model can be used for the
selection. This contributes to the readability of the script.

1 ModelAssignment =
2 ModelVariable ’:’ Model;

Listing 2. Syntax of Model Selection

2) Instance Selection: Once the context is defined with a
model for the reporting, instances of runtime executions are
selected in the second part of the MbR DSL (see Listing 3).
For this, sets of execution instances are specified using
queries. A set containing a single instance can for example
be specified using its instanceID (cf. Section III). The sets
can then be used for the abstract annotations.

1 InstanceSetAssignment =
2 InstanceSetVariable ’:’
3 InstanceSelectExpression;

Listing 3. Syntax of Instance Selection

3) Abstract Annotation: The third part of the DSL (see
Listing 4) assigns reporting data to model elements. In this
way, the model is enriched with data from the runtime and
analytics. The abstract annotations are finally supplemented
by the formatting instructions at the end of the script
to concretize the visualization. For the annotation, model
elements are selected, e.g., by name, type, or UUID. Via a
key name the annotation is associated with results from an
operation.

1 Annotation =
2 ModelElementSetSelectExpression {
3 ’<<’ AnnotationKey
4 ’=’ EvaluationExpression };

Listing 4. Syntax of Abstract Annotation

2The Extended Backus–Naur Form [11] (EBNF) is used in this paper.

4) Formatting Instructions: Finally, the fourth and last
part of the DSL (see Listing 5) specifies how the abstract
annotations should be displayed graphically for visualization.
For this, the annotation key is used and an annotation element
for presentation is created. The element and the annotation
content are then assigned formatting styles. Style properties
are assigned values that can depend on content of the
annotation. This is useful for case-based visual presentation
of reporting data. For example, values can be compared
against thresholds and depending on the result the data can
be highlighted or not shown at all.

1 Formatting =
2 AnnotationKeyName
3 [{ ’,’ AnnotationKeyName }] ’>>’
4 AnnotationElementCreateExpression ’{’
5 [{ ElementStyleExpression }]
6 ’}{’
7 [{ ContentStyleExpression }]
8 ’}’;
9
10 AnnotationKeyName =
11 AnnotationKey [’(’ AnnotationName ’)’];
12
13 StyleExpression =
14 StylePropertyName ’:’
15 StyleExpression ’;’;

Listing 5. Syntax of Formatting Instructions

C. MbR Service

The MbR service, invoked by the MbR frontend with
a MbR DSL script, delivers a model-based report for
visualization. Its components are described next.

1) DSL Interpreter: First, the DSL interpreter processes
the MbR script. From the first three parts of the script (i.e.,
model selection, instance selection, and abstract annotation)
a SQL procedure is generated that is called later by the
MbR runtime. Finally, the procedure is created at the
data warehouse and the MbR runtime is invoked. For the
generation of the SQL procedure, the selected model is related
to the execution points. That is, for each model element of
the model reporting data the respective executionIDs are
looked up (see Section III). Also the type of information
(either used in queries of the second part or in expressions
of the third part) is related to the reporting tables (see also
Section IV-A).

2) MbR Runtime: After the SQL procedure has been
created as a preliminary action, the MbR runtime, consisting
of the components described next, realizes the model-based
reporting.

Database Client: The first step involves the retrievement
of reporting data for the model-based reporting from the data
warehouse. For this, the stored procedure is called and its
results transformed if necessary.

Abstract Annotator: In the next step, the model is
annotated with the data according to the third part of the MbR
script. Figure 6 displays a metamodel for abstract annotations.
Thus, the abstract annotator produces a model conforming to
this metamodel. Note that in the model the Annotations

relate to ExecutionPoints not model elements. Thus, at
this step the correlation of model elements with execution
points is evaluated.

Figure 6. Abstract-Annotations Metamodel

Model Annotator: Via a model transformation the
abstract annotations are transformed to the final format
according to the fourth and final part of the MbR script (see
Section IV-B4). For this, a model-to-model transformation
is generated from the formatting instructions and executed
using the abstract annotations as obtained previously.

Figure 7. Metamodel of MbR Model Annotations

Figure 7 displays the target metamodel of the transforma-
tion. In this, the AnnotationElement constitutes a new
graphical element for the model-based reporting by the
MbR frontend. It comprises the annotation content with
styles as well as styles for the element itself. These styles
(i.e., ElementStyle and ContentStyle) are depicted in
Figure 8. Although this formatting metamodel includes
concepts as found, e.g., in Cascading Style Sheets [12] (CSS),
please note that it is neither complete nor an elaborated
model but serves rather as a proof of concept at this point.
As is the case with the reporting data metamodel, also the
formatting metamodel is customizable and extensible. The
MbR frontend, however, needs to know how to consider and
process the styles for the model-based reporting.

D. MbR Frontend
For model-based reporting, the MbR frontend issues a

service call to the MbR service passing a MbR script and

Figure 8. Formatting Metamodel

displays the reporting data in a graphical DSL. For this, the
results from the service call in the form of a formatting
model are processed and applied to the model. The MbR
frontend serves as the reporting tool for stakeholders of
business applications. In addition, it can be utilized as an
end-to-end monitor and last but not least it can bridge the
gap between business application execution and design if
integrated into or realized within the integrated development
environment (IDE) of developers.

V. PROCESS MONITORING POWERED BY
MODEL-BASED REPORTING

The presented MbR approach can be applied to different
domains and models such as use case, architectural, and
class diagrams. In this section the applicability of MbR for
process monitoring is demonstrated as it is a well known and
explored domain from business process management (BPM)
(cf. [13]). For this, a Quotation Creation process from the
sales and distribution domain is used and an example of a
MbR script for specifying the reporting is explained. Finally,
the MbR results are shown as data and within a monitoring
prototype as MbR frontend.

A. Scenario and Setup

Having received a customer request for quotation, the
process is initiated by a sales clerk when creating a sales
quote. After submission, it is either approved or reviewed
and revised. When the sales quote has been approved, a
corresponding sales order is created and sent to the customer.

For facilitating the approval process a customer rating service
can recommend details of the sales quote such as discounts
or prepayments. As the external business service for the
customer rating might occasion expenditures per usage it is
not invoked by default by the process.

The process is provided from an enterprise resource
planning (ERP) system that – during execution – supplies
business intelligence with traceability information. The re-
sulting reporting data is stored in a data warehouse according
to the metamodels for reporting and context data as shown
in Figures 4 and 5.

In the scenario the MbR user (i.e., the stakeholder
that specifies and consumes the model-based reporting) is
interested (1) in how often the customer rating is advised
and revisions take place, (2) in how long it takes for the
ratings, the revisions, and the overall process to complete,
and (3) if there are incidents in the Edit Sales Quote activity
due to compliance violations of separation of duties (SoD)
regulations (i.e., a sales clerk may not edit the sales quote).

B. Applying the Model-Based Reporting Approach

For answering the stakeholder’s questions while expressing
these interests the reporting is specified in the form of a MbR
DSL instance. This is shown in textual form in Listing 6
that exemplifies the four parts of a MbR script 3. First, the
Quote2Order process model is chosen for the model-based
reporting (Line 2). Second, a set of instances is selected given
start and end timestamps (Lines 5-6). Next, some abstract
annotations are defined such as an annotation for the process
model with the average duration of the process instances
(Line 9). Two model elements that correspond to sequence
flows are identified by UUIDs and are annotated with the
usage in percent (Lines 11-13). Note that instance sets in
evaluation expressions of abstract annotations are reduced for
each model element to actual corresponding execution points
by default. For example, in the first annotation the average
duration is calculated for the process. Thus, by convention a
model element context is used in queries. Using an asterisk
(*) it is possible to use the entire instance set. In the second
annotation, thus, the usage rate is calculated by dividing the
visit counts by the total number of instances. In the third
annotation (Lines 15-16) the same evaluation expression is
used as in the first annotation, yet with the customer rating
service selected it relates to a different model element. The
last example (Lines 18-21) defines multiple annotations for
the Edit Sales Quote activity.

Finally, the formatting instructions are declared for the
abstract annotations. For this the annotation keys are used and
it is specified which AnnotationElement from the model-
annotation metamodel shown in Figure 7 shall be created.
In the first (resp. second) block defined by curly brackets

3Please note that in the example the resolution to UUIDs for the selection
of model elements, e.g., by names (see also Section IV-B3), as performed
by the MbR service or frontend, has already taken place.

ElementStyles (resp. ContentStyles) can be specified
according to the formatting metamodel shown in Figure 8.
For simplicity, it is possible to create model-annotations
(i.e., AnnotationElements) with equal styles for different
annotations as shown in the last example (Lines 46-50). It
also explicitly sets the name of the durESQ annotation key
which name otherwise is used by default. Using a sigil ($) it
is possible to make the value of style properties dependent
on the annotation. For the rate annotation (Lines 31-37)
the color and dashstyle properties are dependent on the
value of the according usage. As multiple model elements
were selected also multiple model-annotations are created.
That is, each model element (of an abstract-annotation) is
annotated.

1 // Model Selection (1st part)
2 m: Order2Cash
3
4 // Instance Selection (2nd part)
5 b: m.start >= "2012-02-07 13:42:14"
6 & m.end < "2012-02-14 13:42:14"
7
8 // Abstract Annotation (3rd part)
9 m << duration = AVG(b.duration)
10
11 557dbb5d-7558-4f8e-acc6-d618f12487a6
12 b3b6e8e5-3b30-44a3-8dd5-29f354c60877
13 << rate = COUNT(b.visit)/COUNT(b*)
14
15 8ee48a10-01f0-49a3-b4f5-e13acb5829c5
16 << durRCR = AVG(b.duration)
17
18 f35837fa-7fcc-4fc4-9e2a-ac2ddbd696ed
19 << durESQ = AVG(b.duration)
20 << incidents = COUNT(b.violation)
21 + " / " + COUNT(b*)
22
23 // Formatting Instructions (4th part)
24 duration >> Rectangle {
25 display: absolute; x: 465; y: 60;
26 background: lightgray;
27 gradient: left2right;
28 gradient-color: white;
29 dashstyle: dash;
30 }{}
31 rate >> Edge {
32 display: relative; y: -15;
33 }{
34 color: $ < 50 ?
35 rgb(128,128,128) : rgb(255,255,255);
36 dashstyle: $ < 50 ? dot : dash;
37 }
38 durRCR("duration") >> Comment {
39 display: inline;
40 background: #b0c4de;
41 gradient: left2right;
42 gradient-color: white;
43 }{
44 display-compliance: true;
45 }
46 durESQ("duration"),incidents >> Comment {
47 display: inline;
48 }{
49 display-compliance: true;
50 }

Listing 6. Model-Based Reporting DSL Script Example

C. Utilizing Model-Based Reporting

Invoked with the MbR script, the MbR service returns
annotations for model-based reports in the form of an

annotation model (conforming to the metamodel shown in
Figure 7). That is, the script is interpreted and the MbR
runtime is executed while reporting data for the model
elements is resolved using the correlation entries.

Listing 7 partially displays the results for the MbR script.
The first annotation relates to the sequence flow invoking
the customer rating service and the second annotation is
for the Edit Sales Quote activity. For some annotations the
display-compliance property was specified in the MbR
script. The evaluated compliance level is thus indicated for
the respective model elements. For the sequence flows the
color and the dashtype were evaluated and set.
1 <ModelAnnotations>
2 <annotationElements
3 xsi:type="modelAnnotations:Comment"
4 modelID="557dbb5d-7558-4f8e-acc6-d618f12487a6">
5 <styles xsi:type="presentation:PositionStyle"
6 display="relative" y="-15"/>
7 <styles xsi:type="presentation:ColorStyle"
8 color="#888888"/>
9 <styles xsi:type="presentation:LineStyle"
10 dashstyle="dot"/>
11 <contents xsi:type="annotationContent:Metric"
12 value="2" unit="Percent"/>
13 </annotationElements>
14 <annotationElements
15 xsi:type="modelAnnotations:Comment"
16 modelID="f35837fa-7fcc-4fc4-9e2a-ac2ddbd696ed">
17 <styles xsi:type="presentation:PositionStyle"
18 display="inline"/>
19 <contents
20 xsi:type="annotationContent:KeyValuePair"
21 complianceLevel="warning" key="duration">
22 <value xsi:type="annotationContent:Metric"
23 value="06:18:31.569" unit="Time"/>
24 </contents>
25 <contents xsi:type="annotationContent:Text"
26 complianceLevel="ok" value="0 / 132"/>
27 </annotationElements>
28 <!-- ... //-->
29 </ModelAnnotations>

Listing 7. Example of Model-Annotations for MbR Frontends

Finally, Extensible Markup Language [14] (XML) seri-
alized code is processed by the MbR frontend that creates
annotations for the AnnotationElements using the con-
tained styles and contents. That is, the MbR results are woven
into the process model and displayed accordingly. Figure 9
displays the model-based report with the resulting process
diagram in a monitoring prototype 4. Icons indicate and
thus report the compliance level. For the Edit Sales Quote
a warning is displayed for the duration as it is beyond a
certain threshold as specified in a requirement (delineated in
Section IV-A, please note that compliance checking is not
the focus of this work).

VI. DISCUSSION

Having motivated and presented the approach with the idea
of model-based reporting as the main contribution of this
paper while having provided some implementation details
and having demonstrated an application of MbR for process

4The monitoring MbR frontend has been developed in C# using the
Microsoft Visual Studio Visualization and Modeling SDK [15].

Figure 9. Monitoring Prototype using Model-Based Reporting displaying the Model-Annotations in the Process Model

monitoring, this section will now mention some benefits,
consequences, and limitations of the approach and present
lessons learned.

A. From Business Application Execution to Design

Relating information from runtime and analytics with
models at reporting time, MbR bridges phases of the business
application engineering lifecycle. It permits stakeholders to
consume the reporting data while relating to models. In
an MDE context, the models can be design time artifacts.
Stakeholders of business applications can use model-based
reports as a starting point for modifying and evolving model-
driven business applications. As a result, development cycles
are shortened.

1) A Unified Environment for Business Application Engi-
neering: An IDE can be adopted as a frontend for different

phases of a business application lifecycle, i.e., as a modeling
or reporting tool. This provides for a consistent environment
to developers and other stakeholders of business applications.
In a MDE context, the MbR frontend can be integrated into
the modeling tool. Models that are used for MbR can then
be revised directly for a new, iterative development cycle.

2) Decoupling the Reporting: Due to the generic and
conceptual approach, MbR can be adopted in different
settings. For example, the MbR service can be used by diverse
products. Also, MbR tools are decoupled from business intelli-
gence and may potentially be utilized with different products,
platforms, and technologies. For this, the metamodels for the
reporting data and the model-annotations need to be agreed
upon. In practice, there often exist dedicated, yet distinct,
tools for similar purposes covering kindred functionalities.

For end-users of enterprise systems it is quite awkward to
determine which tool to use in and for which situation. Often
this relates to some technical conditions and details, e.g.,
compatibility of products. Decoupling the reporting clearly
eases the interoperability of tools.

B. Applicability and Limitations of the Approach

While models are required for the reporting, the approach
does not presume business applications to be model-driven.
In fact, MbR can equally be applied to non-model-driven
systems such as legacy systems. In such cases it suffices
to define a graphical DSL reflecting the concepts in a
stakeholder-tailored way. The underlying model (i.e., abstract
DSL) can be used as a first step towards MDE.

As model-based reporting is not limited to a particular
model it is applicable to different types of models such
as process models (e.g., [16], [17]), architectural diagrams
(e.g., [18]), graphical user interface (GUI) models, or data
models. Having multiple models that reflect systems, it is
possible to have different views (cf. [5]) on the system.

Besides the assumption that business applications disclose
traceability information as discussed in Section III, it is
further presumed that business analytic applications populate
the reporting data in the data warehouse according to the
reporting data metamodel. If the latter is not the case,
reporting data needs to be transformed accordingly. A
limitation of the presented approach is the ability for mashups,
i.e., to combine data from various sources. Mashups need
to be realized on top of MbR. Finally, online analytical
processing (OLAP) functionality is not yet covered by the
work presented in this paper; yet the MbR approach is not
limited in supporting capabilities such as drill-down and
navigability.

C. Design Decisions and Lessons Learned

Aiming at reconnecting data from business application
execution with models the decision to opt for annotations
was clear from the beginning. For specifying the reporting
from an end-user perspective the need for a DSL was born.
Thus, the establishment of a MbR service and the architecture
was a natural result of the endeavor.

While the textual DSL was a first and valid approach for
expressing stakeholder requests towards reporting, the MbR
frontend should provide, nevertheless, graphical guidance in
addition so that an end-user is not confronted with textual
DSL scripts. Instead the frontend shall generate the MbR
scripts and pass it to the MbR service transparently.

The development of the DSL underwent several iterations.
For brevity the DSL and its design decisions are not presented
in all detail in this paper as the focus of this work is rather
the overall idea, approach, and architecture of MbR. To point
out one particular feature of the DSL, note that in the second
part of MbR scripts instance sets are selected. It is thus
possible to compare different sets and visualize the results

in the same model as chosen at the beginning of the script.
In monitoring solutions (see Section VII) this is usually not
possible and thus a distinction of this work.

A requirement in regard to the MbR frontend was that
the results from the MbR service shall be easily consumable.
Thus, after the abstract annotations, the MbR runtime
calculates the layout information for the various model-
annotations so that they can be processed directly by the
MbR frontend. While this simplifies the implementation for
enriching the models with the annotations, it comes with the
tradeoff that the formatting is done at the server-side. That is,
changes in the frontend imply the need to invoke the MbR
service in order to obtain the new formatted annotations for
the model. Clearly, this can be improved by permitting some
client-side formatting. Also the amount of data can be varied.
That is, the service may provide more annotations to the
frontend than displayed initially but that may be visualized
afterward.

VII. RELATED WORK

Model-based reporting as a holistic and model-centered
approach involves a number of issues as it effectively
establishes and enables end-to-end solutions, e.g., for the
monitoring of business applications. For this reason, the
presented work does not claim to contribute new techniques
or metamodels. Motivating the vision and presenting the
novel notion of model-based reporting for positioning the
work, it rather illustrates its feasibility and exemplifies the
idea with an architecture, utilizing a modeling approach. By
incorporating work from the state-of-the-art from various
areas, the presented MbR approach can be refined for
improving the maturity and quality of an implementation.
Among these are the establishment and management of the
correlation entries and the DSL for expressing the model
selection, annotation, and formatting. Besides literature that
addresses these problems also industrial products offer fine-
grained support for distinct features. Yet, a conceptual,
domain-agnostic, thus generic, and holistic approach of
consolidating data with models is missing in both literature
and implementations.

For the consolidation of data originating from execution
and analytics with models, traceability is utilized. Thus, some
work in this area is discussed next. Besides that, the topics of
model annotation, business process monitoring, and reporting
are related to this work in this section.

Traceability: A survey of traceability approaches in
MDE is presented by Galvao et al. [19]. For establishing and
utilizing traceability information Aizenbud-Reshef et al. [20]
state that MDE provides for new opportunities such as trace
generation and trace analysis. Among their suggestions are to
establish a standard traceability metamodel and to uniquely
identify artifacts across space and time. While the MbR
approach is agnostic about a concrete traceability metamodel,

it builds on the unique identification which is given when
adopting UUIDs.

Traceability links can be established through trace gen-
eration (cf. [21]). For MbR these traces simply need to be
registered too (see Section III). During runtime, traceability
dependencies may be identified automatically through trace
analysis. In this regard, Egyed and Grünbacher [8] present
work in the context of RE focusing on requirements traceabil-
ity and in [22] Egyed et al. report on the cost-quality trade-
off for automated traceability. Independent from a specific
domain (and model), trace analysis for model elements can
be applied for creating and maintaining correlation entries in
the data warehouse. Suppose a trace analysis would take the
role of providing the correlation service in MbR, an end-user
would be directly confronted with the results. In this case
an advanced user could give feedback on false positives or
negatives to the trace analyzer and even provide traceability
dependencies manually. Thus, the MbR approach can be
combined with research results from trace generation and
analysis.

For mapping traces to architectural elements, Ubayashi
and Kamei [2] introduce the notion of archpoints and
program points in code. This translates to model elements
and execution points as presented in Section III. Having
considered a one-to-one mapping, the authors plan to support
a one-to-many mapping in future. In contrast this work
support relationships of type many-to-many between model-
elements and execution points.

The MORSE traceability matrix [3, Listing 1] as presented
in a previous work, directly maps execution points to model
elements. Being agnostic as to the language, it has been
applied to the Business Process Execution Language [23]
(BPEL) where the traceability matrix is generated prior
to deployment of business processes. During execution,
events are raised that disclose the correlation with the model
elements in form of traceability information. As the presented
matrix is static the approach has a certain shortcoming:
the relation of execution to models needs to be known at
deployment time already. While this condition is fulfilled in
the context of (static) model-driven BPEL processes, it may
not hold when applied to a business application context. In
a non-model driven setting, models do not exist a priori but
are only introduced for MbR. In contrast, the approach as
described in Section III supports dynamic resolution. Thus,
new models that present new views on the system can be
added gradually for MbR. Another distinction of this work
is that the MbR approach is not limited to process models
but can be applied to any metamodel. In this regard, the only
presumption is the unique identification of model elements.

Model Annotations: Kolovos et al. [24] present a
modeling language agnostic approach for annotating models
with traceability links. The underlying model matching and
merging could be applied for the abstract annotation from
Section IV-B3 and within the MbR frontend. Beyond merging,

the MbR DSL also comprises support for formatting. For
comparing annotation approaches, performance evaluations
need to be conducted.

Monitoring and Reporting: In the context of BPM
there is a variety of industrial products for business process
monitoring, often delivered as part of the BPM product of
the companies portfolio. Among them are WebSphere 5,
webMethods BPMS 6, and NetWeaver 7 to name a few.
WebSphere Business Monitor allows end-users to select per-
formance indicators, i.e., which values should be monitored,
and define KPIs. Execution can be monitored graphically and
based on the process models. Similarly, NetWeaver enables
stakeholders of business processes to monitor a process
instance using the process model. Multiple instances can
be visualized with another tool for process performance
management 8. This serves as a starting point for process
optimization.

In these solutions there is usually some support for
customization in regard to the formatting. In the example
presented in this paper, e.g., the color and the dashstyle
of the annotated sequence flows are dependent on values
of reporting data. The consuming user can specify these
formatting instructions. A distinction of this work is the
decoupling of the frontend that is not limited to process
models. Thus, the approach can be applied for various
purposes and in different contexts. As a result of the
decoupling, the frontend becomes interoperable with different
products. As a side benefit, models are fostered in the systems
landscape. In contrast to monitoring products, reporting
solutions such as Crystal 9 currently provide much more
facilities for selecting data, calculating values, and specifying
the formatting. Yet, they do not apply data from runtime and
analytics to models as presented. Nonetheless the concepts
can be adopted for MbR such as formatting instructions that
are much more elaborate than presented here for exemplifying
the feasibility of the approach.

VIII. CONCLUSION

Enriching models as central development artifacts in
MDE with data from the runtime and from analytics, MbR
closes the business application life-cycle from execution and
analysis to development. It eases the creation of reports for
stakeholders through a tailored DSL which can further be
facilitated with a GUI that guides the user in specifying the
model-based reporting. In addition, MbR strengthens the role
of models in business applications and permits to introduce
new conceptual models and views that are potentially valuable
beyond the scope of reporting.

5http://ibm.com/software/integration/business-monitor
6http://softwareag.com/corporate/products/wm/bpm/bpms
7http://sap.com/netweaver
8see http://scn.sap.com/docs/DOC-8435
9https://sap.com/solutions/sap-crystal-solutions

ACKNOWLEDGMENTS

The author would like to thank Heiko Witteborg and Wei Wei (危巍)
for realizing and contributing to the monitoring MbR frontend prototype,
Andreas Roth and Anis Charfi for fruitful discussions, Dirk Mayer for
reviewing the state-of-the-art, and reviewers for valuable comments. The
work presented in this paper was performed in the context of the Software-
Cluster project Emergent 10. It was partially funded by the German Federal
Ministry of Education and Research under grant no. 01IC10S01.

REFERENCES

[1] M. Völter and T. Stahl, Model-Driven Software Development:
Technology, Engineering, Management. Wiley, 2006.

[2] N. Ubayashi and Y. Kamei, “Architectural point mapping for
design traceability,” in FOAL, S. Katz, G. T. Leavens, and
H. Masuhara, Eds. ACM, 2012, pp. 39–44.

[3] T. Holmes, U. Zdun, and S. Dustdar, “MORSE: A Model-
Aware Service Environment,” in Proceedings of the 4th
IEEE Asia-Pacific Services Computing Conference (APSCC),
M. Kirchberg, P. C. K. Hung, B. Carminati, C.-H. Chi,
R. Kanagasabai, E. D. Valle, K.-C. Lan, and L.-J. Chen, Eds.
IEEE, Dec. 2009, pp. 470–477.

[4] R. Frigg and S. Hartmann, “Models in science,” in The
Stanford Encyclopedia of Philosophy, spring 2009 ed., E. N.
Zalta, Ed., 2009, [accessed in June 2012]. [Online]. Avail-
able: http://plato.stanford.edu/archives/spr2009/entries/models-
science/

[5] P. Kruchten, “The 4+1 view model of architecture,” IEEE
Software, vol. 12, no. 6, pp. 42–50, 1995.

[6] H. Tran, U. Zdun, and S. Dustdar, “View-based and model-
driven approach for reducing the development complexity in
process-driven SOA,” in BPSC, ser. LNI, W. Abramowicz and
L. A. Maciaszek, Eds., vol. 116. GI, 2007, pp. 105–124.

[7] J. Bézivin, “On the unification power of models,” Software
and System Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[8] A. Egyed and P. Grünbacher, “Automating requirements
traceability: Beyond the record & replay paradigm,” in ASE.
IEEE Computer Society, 2002, pp. 163–171.

[9] International Telecommunication Union, “ISO/IEC 9834-8
information technology – Open Systems Interconnection –
Procedures for the operation of OSI Registration Authorities:
Generation and registration of Universally Unique Identifiers
(UUIDs) and their use as ASN.1 object identifier components,”
Sep. 2004, [accessed in June 2012]. [Online]. Available:
http://itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf

[10] H. Tran, T. Holmes, E. Oberortner, E. Mulo, A. B. Cavalcante,
J. Serafinski, M. Tluczek, A. Birukou, F. Daniel, P. Silveira,
U. Zdun, and S. Dustdar, “An End-to-End Framework for
Business Compliance in Process-Driven SOAs,” in 12th
International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC). IEEE Computer Society,
Sep. 2010, pp. 407–414.

10http://www.software-cluster.org

[11] International Organization for Standardization,
“ISO/IEC 14977:1996 Information technology –
Syntactic metalanguage – Extended BNF,” 1996,
[accessed in June 2012]. [Online]. Available:
http://www.iso.org/iso/catalogue detail.htm?csnumber=26153

[12] “Cascading style sheets, level 2 CSS2 specification,”
May 1998, [accessed in June 2012]. [Online]. Available:
http://w3.org/TR/xhtml1/

[13] O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg,
“Service-oriented architecture and business process choreog-
raphy in an order management scenario: rationale, concepts,
lessons learned,” in OOPSLA ’05: Companion to the 20th
annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications. New York,
NY, USA: ACM Press, 2005, pp. 301–312.

[14] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau, “Extensible markup language (XML) 1.1,”
Aug. 2006, [accessed in June 2012]. [Online]. Available:
http://w3.org/TR/xml11/

[15] “Visual Studio Visualization and Modeling SDK,” Microsoft
Corp., [accessed in June 2012]. [Online]. Available:
http://archive.msdn.microsoft.com/vsvmsdk

[16] Object Management Group, Inc., “Business Process
Model and Notation (BPMN), Version 2.0,” Jan.
2011, [accessed in June 2012]. [Online]. Available:
http://www.omg.org/spec/BPMN/2.0

[17] “Modern business process management: Yawl and its support
environment,” YAWL Foundation, [accessed in March 2012].
[Online]. Available: http://yawlbook.com

[18] Object Management Group, Inc., “Unified Modeling Language
(UML),” Mar. 2000, [accessed in June 2012]. [Online].
Available: http://omg.org/spec/UML

[19] I. Galvão and A. Goknil, “Survey of traceability approaches
in model-driven engineering,” in EDOC. IEEE Computer
Society, 2007, pp. 313–326.

[20] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-
Gafni, “Model traceability,” IBM Systems Journal, vol. 45,
no. 3, pp. 515–526, 2006.

[21] J. Richardson and J. Green, “Automating traceability for
generated software artifacts,” in ASE. IEEE Computer Society,
2004, pp. 24–33.

[22] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher, “De-
termining the cost-quality trade-off for automated software
traceability,” in ASE, D. F. Redmiles, T. Ellman, and A. Zisman,
Eds. ACM, 2005, pp. 360–363.

[23] Organization for the Advancement of Structured Information
Standards, “Web service business process execution language
version 2.0,” OASIS Web Services Business Process
Execution Language (WSBPEL) TC, OASIS Standard,
Jan. 2007, [accessed in June 2012]. [Online]. Available:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[24] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “On-demand
merging of traceability links with models,” in 3rd ECMDA
Traceability Workshop, Jul. 2006, pp. 47–55.

