
Model-driven and Domain-specific Architectural
Knowledge View for Compliance Meta-data in

Process-driven SOAs

Ta‘id Holmes, Huy Tran, Uwe Zdun, and Schahram Dustdar
Distributed Systems Group

Institute of Information Systems
Vienna University of Technology

Vienna, Austria
{tholmes, htran, zdun, dustdar}

@infosys.tuwien.ac.at

ABSTRACT
Architectural knowledge tends to get lost as the architecture
evolves. In many cases, the main reason is that there are no
incentives for stakeholders to invest enough time into recording the
architectural knowledge. This is in part due to the generic nature
of architectural knowledge recording and sharing means, such as
architectural decision templates and meta-models. In this paper,
we investigate on the feasibility of a domain-specific architectural
knowledge view in the context of a model-driven project. The
domain-specific approach helps us to make architectural knowl-
edge (AK) recording more useful for a project apart from the
goal of AK sharing and reuse. Model-driven development helps
us to ensure the consistency of the architectural knowledge as it
is part of the generation process. Finally, depicting architectural
knowledge as a architectural view supports separation of concerns
with regard to the various models in the system. We demonstrate
our approach for a compliance meta-data view for process-driven
SOA systems that records compliance requirements and rationales
of an architecture.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures;
D.2.11 [Software Architectures]: Service-oriented architecture
(SOA)

General Terms
Design, Documentation, Legal Aspects

Keywords
Architectural Knowledge, Compliance, MDD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SHARK ’10, May 2, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-967-1/10/05 ...$10.00.

1. INTRODUCTION
Architectural Knowledge (AK) tends to evaporate as software

systems evolve, with grave consequences for software development
projects [14]. A number of approaches have been proposed to
generically solve this problem, for example based on text templates
for AK [23] or based on meta-models to describe the AK [24, 14].
While these approaches work well in general, in the daily business,
AK capturing is considered as an afterthought or not at all [25].
Retrospective modeling of AK is often seen as a painful additional
responsibility without many gains [25]. It is still unclear how to
capture AK without introducing efforts that outweigh the bene-
fits [23, 3].

In this paper, we present a feasibility study for the idea to pro-
vide an architectural view [10] that domain-specifically captures
one specific kind of AK – that is relevant to a project – using a
custom meta-model and attach it to the sources and models of the
project via model-driven technology. While there is the downside
to this approach that the project needs to design and implement
this domain-specific AK view, whereas the generic approaches are
ready to use out-of-the-box, there are also a number of potential
benefits. Recording only domain-specific AK means that only rel-
evant information is recorded. The effort to design and imple-
ment the AK view requires the project to investigate in depth which
AK is really needed. This further strengthens the relevance of the
recorded information. Finally, via the model-driven approach, we
can produce useful output in addition to making the AK sharable
and reusable. For example, some AK might be used to generate
online and offline software documentations.

In this paper, we investigate on this approach using the case
of compliance in service-oriented architectures. Compliance in
service-oriented architectures (SOA) means in general complying
with laws and regulations applying to a distributed software sys-
tem. Unfortunately, many laws and regulations are hard to formal-
ize, and before designing the software often an interpretation of
the laws and regulations by domain experts or judicial experts is
needed. Hence, it is difficult to see from a given SOA design or
implementation, how the architecture supports the compliance re-
quirements. In other words, the rationale of the SOA design gets
lost.

This case is particularly interesting because recording the ratio-
nale and the requirements is required for a different reason than
only the AK sharing and reuse: In an audit, many companies must
be able to show that they comply to the laws and regulations. Our
idea is to record this compliance meta-data alongside the system

design and implementation in a special domain-specific AK view.
In this view, we provide the compliance requirements that led to
the architectural design along with links to the architectural com-
ponents (in this case mainly services and processes) that implement
the compliance requirements (giving a rationale for the architec-
tural configuration of these components). While this information
might not provide all the information, e.g., a full-blown architec-
tural decision model provides, it is still useful enough to understand
the main rationale of the decisions behind the compliance design.

Our approach makes the assumption that model-driven develop-
ment (MDD) [19] is used to implement the architectural views and
to generate the running system from the view models. MDD helps
us to keep the data in the AK view up-to-date and consistent with
the project because otherwise the system itself would be generated
with incomplete or wrong data, or the generation might even fail.

This paper is organized as follows: First, in Section 2 we
provide some background on compliance in SOAs as the area in
which our approach is applied. Next, in Section 3 we introduce
our View-based Modeling Framework that is used to implement
process-driven SOAs in a view-based fashion using MDD tech-
niques. Besides illustrating an example process, we also present
the view extension mechanisms used to implement the compliance
meta-data view, which is presented in Section 4. Next, in Section 5
we demonstrate how compliance documentation can be generated
from such meta-data using model-driven transformation. In
Section 6 we compare to the related work and in Section 7 we
conclude.

2. COMPLIANCE IN SERVICE-ORIENTED
ARCHITECTURES

In this paper, we use a case from the area of business compliance
in process-driven SOAs to illustrate our model-driven and domain-
specific architectural knowledge view approach.

A service is in first place a distributed object that is accessible
via the network and has certain characteristics: The service offers a
public interface and is both platform- and protocol-independent. It
is self-contained in the sense that it can interdependently be used,
and no implementation details need to be known for using the ser-
vice. Service-oriented Architecture (SOA) is the main architectural
style for service-oriented computing. In this paper we focus on a
particular kind of SOAs, which are process-driven. In a process-
driven SOA, a process engine is used to orchestrate the services in
order to implement business processes [8].

IT compliance means in general complying with laws and regu-
lations applying to an IT system, such as the Basel II Accord [2],
the International Financial Reporting Standards (IFRSs) [12], the
Markets in Financial Instruments Directive (MiFID) [6], the Finan-
cial Security Law of France (LSF) [18], the Dutch Corporate Gov-
ernance Code (Code-Tabaksblat) [21], and the Sarbanes-Oxley Act
(SOX) [4]. These cover issues such as auditor independence, cor-
porate governance, and enhanced financial disclosure. Laws and
regulations are, however, just one example of compliance concerns
that occur in process-driven SOAs. There are many other rules and
constraints in a SOA that have similar characteristics. Some exam-
ples are service composition and deployment rules, service execu-
tion order rules, information exchange policies, security policies,
qualitiy of service (QoS) rules, internal business rules, laws, and
licenses.

Compliance concerns stemming from regulations or other com-
pliance sources can be realized using a number of so-called con-
trols. A control is any measure taken to assure a compliance re-
quirement is met. For instance, an intrusion detection system, a

firewall, or a business process realizing separation of duty require-
ments are all controls for ensuring systems security. As regulations
such as SOX are not very concrete on how to realize the controls,
usually, the regulations are mapped to established norms and stan-
dards describing more concretely how to realize the controls for a
regulation. For example, COBIT [11] is a standard framework that
defines among others controls for ensuring system security like the
examples named before. A risk assessment is necessary to under-
stand for instance the possible impacts of missing or failing con-
trols. Controls can be realized in a number of different ways, in-
cluding manual controls, reports, or automated controls.

3. VIEW-BASED MODELING FRAME-
WORK

In this section, we give an overview of the View-based Modeling
Framework (VbMF) [22] that is used as a foundation for imple-
menting our AK views. It is a model-driven infrastructure that can
generate code for process-driven SOAs in a view-based fashion.
After explaining the basics of VbMF, we explain the view exten-
sion mechanisms used to implement our domain-specific AK view
for compliance. Having such view extension mechanisms in place
is an important part of our solution for model-driven AK views:
This way the AK view can extend or annotate the existing models
that are used to generate the system.

A typical business process in a SOA embodies various tangled
concerns, such as the control flow, data processing, service and
process invocations, fault handling, event handling, human inter-
actions, transactions, to name but a few. The entanglement of
those concerns increases the complexity of process development
and maintenance as the number of involved services and processes
grow. In order to deal with this complexity, we use the notion of
architectural views [10] to describe the various SOA concerns. In
particular, a view is a representation of one particular concern of a
process. We devise different view models for formalizing the con-
cept of architectural view.

Figure 1 shows basic process concerns such as the control flow,
service invocations, and data processing, in terms of the flow view,
collaboration view, and information view model, respectively. In
addition to these concerns, the human view (cf. [9]) captures hu-
man aspects of business processes, i.e., the participation of users
in processes. Finally, the transaction view allows to define trans-
actions within the control flow. All these view models are built
up around a Core model shown in Figure 2. The Core model is
intentionally developed for conceptually representing the essence
of a business process and the services with which it interoperates.
That is, the Core model covers three distinct concepts: the process,
the relationships between process and the environment, i.e., the ser-
vices, and the internal representation of the process, i.e., the process
views. Process concerns described by the view models merely re-
late to these concepts in the sense that each concern involves either
the process’s interior or exterior, or both. In other words, the other
view models derive and extend the foundational concepts provided
in the Core model as shown in Figure 1. As a result, the Core model
plays an important role in our approach because it provides the ba-
sis for extending and integrating view models, and establishing and
maintaining the dependencies between view models [22].

3.1 Separation of Concerns
Our view-based approach is not limited to these concerns, but

can be extended to cover various other concerns. For instance, hu-
man interactions, transactions, event handling have been realized
as extensions [22, 9]. This view extension mechanism is also used

Core
Model

FlowView
Model

CollaborationView
Model

InformationView
Model

HumanView
Model

BpelCollaborationView
Model

BpelnformationView
Model

BPEL4PeopleView
Model

Technology-
specific Layer

Abstract
Layer

TransactionView
Model

extends
(refines)

extends
(refines)

extends
(refines)

extends extends extends extendsextends

horizontal dimension
mastering the complexity of tangled process concerns

ve
rt

ic
al

 d
im

en
si

o
n

b
rid

gi
ng

 a
bs

tr
a

ct
io

n
le

ve
ls

BpelFlowView
Model

extends
(refines)

Figure 1: Layered Architecture of the View-based, Model-driven Approach

Element

Service Process View**

view

*
requires

1..*
provides

element*

name:String
nsURI:String

NamedElement

CoreModel

process1service*

Figure 2: VbMF Core Model – Used for View Integration

later for introducing our domain-specific AK view.
A new concern can be integrated into our approach by using

a corresponding New-Concern-View model that extends the basic
concepts of the Core model and defines additional concepts of that
concern. By adding new view models for additional process con-
cerns, we can extend the view-based approach along the horizontal
dimension, i.e., the dimension of process concerns, to deal with the
complexity caused by the various tangled process concerns.

3.2 Abstraction Levels
There are many stakeholders involved in process development

at different levels of abstraction. For instance, business experts re-
quire high-level abstractions that offer domain or business concepts
concerning their distinct knowledge, skills, and needs, while IT ex-
perts merely work with low-level, technology-specific descriptions.

The MDD paradigm [19] provides a potential solution to this

problem by separating the platform-independent and platform-
specific models. A platform-independent model is a model of a
software system that does not depend on the specific technologies
or platforms used to implement it while a platform-specific model
links to particular technologies or platforms. Leveraging this
advantage of the MDD paradigm, we devise a model-driven stack
that has two basic layers: abstract and technology-specific. The
abstract layer includes the views without the technical details such
that the business experts can understand and manipulate. Then, the
IT experts can refine or map these abstract concepts into platform-
and technology-specific views.

The technology-specific layer contains the views that embody
concrete information of technologies or platforms. On the one
hand, a technology-specific view model can be directly derived
from the Core model, such as the transaction view model shown
in Figure 1. On the other hand, a technology-specific view model
can also be an extension of an abstract one, for instance, the BPEL
collaboration view model extends the collaboration view model,
the BPELPeople view model extends the human view model, etc.,
by using the model refinement mechanism. By refining an abstract
layer down to a technology-specific layer, our view-based approach
helps bridging the abstraction levels along the vertical dimension,
i.e., the dimension of abstraction, which is orthogonal to the hori-
zontal dimension.

According to the specific needs and knowledge of the stakehold-
ers, views can be combined to provide a richer view or a more
thorough view of a certain process. For instance, IT experts may
need to involve the process control flow along with service inter-
actions which is only provided via an integration of the flow view
with either the collaboration view or BPEL collaboration view.

Based on the aforementioned view model specifications, stake-
holders can create different types of views for describing specific
business processes. These process views can be instances of the
concerns’ view models, extension view models, or integrated view

models (see Figure 1). They can be manipulated by the stakehold-
ers to achieve a certain business goal, or adapt to new requirements
in business environment or changes in technology and platform.
Finally, we provide model-to-code transformations (or so-called
code generations) that take these views as inputs and generate pro-
cess implementations and deployment configurations. The result-
ing code and configurations, which may be augmented with hand-
written code, can be deployed in process engines and application
servers for execution.

TravelBooking
FlowView

AtomicTask

Exclusive

Parallel

Sequence

Loop

Figure 3: Flow View: Travel Booking Example

3.3 Integration of Views
Views can be integrated via integration points to produce a richer

view or a more thorough view of the business process. We devise
a name-based matching algorithm for realizing the view integra-
tion mechanism. This algorithm is simple, but effectively used at
the view level (or model level) because from a modeler’s point of
view in reality, it makes sense, and is reasonable, to assign the same
name to the modeling entities that pose the same functionality and
semantics. Nonetheless, other view integration approaches such as
those using class hierarchical structures or ontology-based struc-
tures are applicable in our approach with reasonable effort as well
(see [22] for details).

3.4 Example: Travel Booking Process
Figure 3 shows an example of the flow view for a travel book-

ing application (modeled using the VbMF Eclipse perspective). As
can be seen the usual concepts of process modeling can be used
in the flow view. Figure 4 shows two extensional views in the
BPEL specific variant: the BPEL collaboration and information

views. The collaboration view depicts information on the compo-
nents (i.e., services) the process collaborates with and how collab-
oration is achieved. The information view depicts information on
how data is passed in, into, and out of the process, as well as the
business objects the process deals with.

The views are inter–related implicitly via the integration points
from the Core view. Following the name-based matching conven-
tion we use the same names – e.g., for the services – in the different
views.

a) TravelBooking BpelCollaborationView b) TravelBooking BpelInformationView

Figure 4: BPEL Collaboration and Information View: Travel
Booking Example

4. DESIGN OF THE COMPLIANCE
META-DATA VIEW

In this section, we illustrate the design of a compliance meta-
data view. We propose a Compliance Meta-data view that allows
for annotation of SOA elements with different compliance require-
ments. This is done by annotating process-driven model instances
with the compliance meta-data. In particular, we elaborate on how
to express compliance requirements originating from some compli-
ance documents for process-driven SOAs using the VbMF. That is,
we want to implement a compliance control for, e.g., a compliance
regulation, standard, or norm, for a process or service.

The Compliance Meta-data view provides domain-specific AK
for the domain of a process-driven SOA for compliance: It de-
scribes which parts of the SOA, i.e. which services and processes,
have which roles in the compliance architecture (i.e., are they
compliance controls?) and to which compliance requirements
they are linked. This knowledge describes important architectural
decisions, e.g., why certain services and processes are assembled

description: String
impact: EnumRiskCategory
likelihood: EnumRiskCategory

Risk

risks

*

*

subControls
*0..1

members

attributeGroups**

title: String
abstract: String
authors: String[]
editors: String[]
journal: String
series: String
volume: int
number: int
booktitle: String
publisher: String
pages: int[]
isbn: String
issn: String
doi: String
uri: String
date: Date
location: String

ComplianceDocument

Standard

Regulation Legislation InternalPolicy

NamedElement
[core]

*

*

*

*

implementations

**

*

standardAttributes

0..1

*

section: String
conflictResolutionPriority: int

ComplianceRequirement

RegulatoryDocument

ControlAttributeGroup

fulfills
follows

contains

contains

implements

has has

maps to

type: String
value: String
description: String

ControlAttribute

isPreventiveDirective: boolean
isAutomatedManual: boolean
isStandardKey: boolean
isEventbasedPeriodic: boolean
reuccurenceInterval: int
reuccurenceIntervalUnit: Date
controlCriteria: String
controlCriteriaToleranceLevel: String
controlViolationEscalationMeasure: String

ControlStandardAttributes

description: String
objective: String

Control

Figure 5: The Compliance Meta-data Model

in a certain architectural configurations. But in addition, the Com-
pliance Meta-data view has other useful aspects for the project:
From it, we can automatically generate compliance documentation
for offline use (i.e., PDF1 documents) and for online use (see
also Section 5). Online compliance documentation is for instance
used in monitoring applications that can explain the architectural
configuration and rationale behind it, when a compliance violation
occurs, making it easier for the operator to inspect and understand
the violation.

A compliance requirement may directly relate to a process,
a service, or a business concern. Nonetheless compliance re-
quirements not only introduce new but also depict orthogonal
concerns to these: although usually related to process-driven SOA
elements, they are often pervasive throughout the SOA and express
independent concerns. In particular, compliance requirements
can be formulated independently until applied to a SOA. As a
consequence, compliance requirements can be reused, e.g., for
different processes or process elements.

Figure 5 shows our proposed Compliance Meta-data view.
Annotation of specific SOA elements with compliance meta-data
is done using compliance Controls that relate to concrete
implementations such as a process or service (these
are defined in other views of the VbMF). A Control can
have subControls. This way compliance controls can be
grouped and combined. Controls fulfill Compliance-
Requirements that relate to ComplianceDocuments such
as a Regulation, Legislation, or InternalPolicy.
Such RegulatoryDocuments can be mapped to Standards

1Portable Document Format [13]

that represent another type of ComplianceDocument. Differ-
ent categories of ComplianceRequirements are shown in
Table 1.

Compliance
Concern

Description

Control flow Order and execution of process elements
Locative Execution location of processes and process elements

(e.g., a certain host, within a company, or a country)
Information Syntax and semantics of used or produced information
Resource Involvement of resources in processes (e.g., human re-

sources, CPU cycles, memory, disk-space)
Temporal Temporal constraints on process execution (e.g., dead-

lines, scheduled activities)

Table 1: Categories of Compliance Requirements

When there exists a compliance requirement, it usually comes
with risks that arise from a violation of it. Risks have dimen-
sions such as likelihood or impact. In this work we provide
basic support for specifying such dimensions using linear compara-
ble constants. Of course, these can be refined with more elaborative
modeling elements that allow for non-trivial functions and the use
of parameters, e.g., for probability density functions.

One important aspect when implementing compliance for a SOA
is that we want to persist the relationship of a compliance require-
ment as derived from, e.g., a certain regulation or standard with
the respective annotated SOA element. This allows for the identi-
fication and resolution of SOA elements, compliance controls, reg-
ulations, risks and compliance documents, e.g., in the case of a
root-cause analysis of compliance violations.

description = „Abuse of individual-related data“
impact = HIGH
likelihood = LOW

AbuseRisk : Risk

title = „EU Directive 95/46/EC Individual Protection“
authors = „European Parliament, Council“
uri = „http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT“
date = 1995-10-24

EU_Directive_95_46_EC : Legislation

CR1: ComplianceRequirement

fulfills

followshas

name = „TravelBooking“

TravelBookingNE : NamedElement

implements

name = „CreditBureau“

CreditBureauNE : NamedElement

implements

name = „FlightBooking“

FlightBookingNE : NamedElement

implements implements implements

name = „CarBooking“

CarBooking : Service

name = „TravelBooking“

TravelBooking : Service

name = „CreditBureau“

CreditBureau : Service

name = „HotelBooking“

HotelBooking : Service

name = „FlightBooking“

FlightBooking : Service

description = „Secure transmission of individual-related data through secure protocol connectors“

C1 : Control

Name-
based
Matching

Name-
based
Matching

name = „CarBooking“

CarBookingNE : NamedElement

name = „HotelBooking“

HotelBookingNE : NamedElement

Figure 6: Compliance Meta-data: Travel Booking Example

For documentation purposes and for the implementa-
tion of compliance controls the ControlStandard-
Attributes help to specify general meta-data for com-
pliance controls, e.g., if the control is automated or manual
(isAutomatedManual). Besides these standard attributes, in-
dividual ControlAttributes can be defined for a compliance
control within ControlAttributeGroups.

Figure 6 shows an example for compliance meta-data that con-
tains a directive from the European Union on the protection of indi-
viduals with regard to the processing of personal data. The example
extends the travel booking application example presented already
in Figures 3 and 4. In particular, the compliance control is imple-
mented by the services of the travel booking process. Hence, the
views in Figures 3 and 4 provide the architectural configuration of
the processes and services, and Figure 6 provides the compliance-
related rationale for the design of this configuration.

The C1 compliance control instance for a secure transmission of
personal data annotates the TravelBooking service of the pro-
cess. The fulfilled requirement CR1 follows the legislative docu-
ment and is associated with an AbuseRisk. Via the name-based
matching convention (see Section 3.3) the SOA elements are anno-
tated in the compliance meta-data view: on the left of Figure 6 the
various services of the travel booking process are displayed next to
the object instances of the compliance meta-data view. The com-
pliance control C1 associates various NamedElements that hold
the same name as the corresponding services from the BpelCollab-
orationView as shown in Figure 4).

With the proposed compliance view, it is possible to specify
compliance statements such as CR1 is a compliance requirement
that follows the EU Directive 95/46/EC on Individual Protec-
tion [5] and is implemented by the TravelBooking service. within
the VbMF.

This information is useful for the project in terms of compli-
ance documentation, and hence likely to be maintained and kept
up-to-date by the developers and users of the system, because it
can be used for generating the compliance documentation that is
required for auditing purposes. But in this model also important
AK is maintained: In particular the requirements for the process
and the services that implement the control are recorded. That is,
this information can be used to explain the architectural configura-
tion of the process and the services connected via a secure proto-
cols connector. Hence, in this particular case this documented AK
is likely to be kept consistent with implemented system and, at the
same time, the rationale of the architectural decision to use secure
protocol connectors does not get lost.

5. GENERATING COMPLIANCE DOCU-
MENTATION

The compliance meta-data not only serves for specifying the ar-
chitectural knowledge of a process-driven SOA as described in the
previous section but also can be used for reporting and documen-
tation purposes. In particular, it can be used for generating doc-
umentations. Such documentations visualize compliance relevant
information for various stakeholders, such as executive managers
and auditors, and therefore, help them to quickly gain an overview
of a thorough view. Hyperlinks to other documentation pages al-
low the user to navigate to related information or to request more
specific details. In Figure 7 a model–to–code Xpand [20] transfor-
mation template is shown that generates HTML2 code for online
documentation. The generated website displays a matrix of con-
trols from a compliance meta-data view instance that are correlated
against risks.

2HyperText Markup Language [1]

<h2>Risk-Control Correlation Matrix</h2>
<table>
<tr>
<th>Risks/Controls</th>

«FOREACH cv.control AS c»
<th>
<a href="«cv.processName+

"_C_"+c.uuid+".html"»">«c.name»
</th>

«ENDFOREACH»
</tr>

«FOREACH cv.risk AS r»
<tr>
<th>
<a href="«cv.processName+

"_R_"+r.uuid+".html"»">«r.name»
</th>

«FOREACH cv.control AS c»
<td>
«IF (c.requirements.risks.contains(r))»X«ENDIF»

</td>
«ENDFOREACH»
</tr>

«ENDFOREACH»
</table>

Figure 7: A Model-driven Transformation Template for Gen-
erating Compliance Documentation

Other generated documentation of the compliance meta-data fo-
cuses on, e.g., the relation of compliance requirements and compli-
ance documents, such as standards or legislative documents. Also,
the coverage of SOA elements in regard to compliance aspects with
their relation to compliance documents can be visualized and high-
lighted. Thus, while the generation of process code may already
consider the meta-data during transformation (e.g., in order to make
sure that a secure protocol is used for services that are annotated ac-
cordingly), documentation that describes domain-specific AK can
be automatically created and updated. The former – i.e., the use of
domain-specific AK during code-generation, e.g., for ensuring the
security of the system as in our example – is a clear incentive for
a developer to specify and provide the AK for the SOA. The latter
– i.e., the model-driven generation of documentation – comes with
the advantage of keeping the domain-specific AK up-to-date.

6. RELATED WORK
Much work on better support for codifying the AK has been

done in the area of architectural decision modeling. Jansen and
Bosch see software architecture as being composed of a set of de-
sign decisions [14]. They introduce a generic meta-model to cap-
ture decisions, including elements such as problems, solutions, and
attributes of the AK. Another generic meta-model that is more de-
tailed has been proposed by Zimmermann et al. [24]. Tyree and
Akermann proposed a highly detailed, generic template for archi-
tectural decision capturing [23].

Question, Options, and Criteria (QOC) diagrams [17] raise a de-
sign question, which points to the available solution options, and
decision criteria are associated with the options. This way deci-
sions can be modeled as such. Kruchten et al. extend this research
by defining an ontology that describes the information needed for
a decision, the types of decisions to be made, how decisions are
being made, and their dependencies [16]. Falessi et al. present the
Decision, Goal, and Alternatives framework to capture design de-
cisions [7].

Recently, Kruchten et al. extended these ideas with the notion

of an explicit decision view [15] – akin to the basic view-based
concepts in our approach.

In contrast to our work, the related work on architectural deci-
sion modeling focuses on generic knowledge capturing. In con-
trast, our approach proposes to capture AK in a domain-specific
fashion, as needed by a project. Hence in our work some AK is not
as explicit as in the other approaches. For example, the collabora-
tions of components are shown in the collaboration view, whereas
the other approaches rather use a typical component and connector
view. The decision drivers and consequences of the decisions are
reported in the compliance sources and as risks. That means, our
domain-specific AK view adopts the terminology from the compli-
ance field, and it must be mapped to the AK terminology in order
to understand the overlaps.

None of the related works provide detailed guidelines how to
support the AK models or views through MDD. In contrast, this is
a focus of our work.

7. LESSONS LEARNED AND CONCLU-
SIONS

Our feasibility study showed that it is feasible in a model-driven
project to add an additional model-driven view that adds AK meta-
data with reasonable effort. We were also able to confirm that it
is possible in the context of a project to record specific AK that is
domain-specifically relevant for a project using such a view. How-
ever, compared to the related work, that generically documents the
AK, additional effort is needed. This is not always a liability as it
might help a project to better understand which kinds of AK docu-
mentations are really required.

The model-driven approach helps to keep the data in the AK
view up-to-date and consistent with the project because otherwise
the system itself would be generated with incomplete or wrong
data, or the generation might even fail. Hence, it makes sense to
connect the data to be recorded in the AK view with other meta-
data that needs to be recorded in the project anyway, so that there is
an additional incentive for developers to record the AK. In our case,
we could demonstrate an area where this is feasible: compliance in
service-oriented systems. A lacking or missing compliance doc-
umentation can have severe legal consequences, which is a great
incentive to record it correctly. Of course, finding such an area in
which meta-data needs to be recorded that is relevant to the project
and can be linked to AK for a given project can be hard. But our
general approach can also be applied for custom AK without such
additional incentives.

There is the danger in our approach that only specific AK –
linked to a domain specific area like compliance – is recorded and
other AK still gets lost. It is the responsibility of a project to make
sure that all relevant AK for understanding an architecture gets
recorded.

We can conclude that it is possible and useful to add a domain-
specific AK view to a model-driven project – with reasonable effort.
If extra incentives can be found, such as generating a documenta-
tion or documenting compliance, they should be used to motivate
developers to keep the information in the AK view up-to-date and
consistent with the system.

Our approach assumes a model-driven approach is used for the
system. It is possible to introduce our approach into a non-model-
driven project (e.g., as a first step into model-driven development).
For doing this at least a way to identify the existing architectural
elements, such as components and connectors, must be found. But
this would be considerably more work than adding the view to an
existing model-driven project.

Acknowledgments
This work was supported by the European Union FP7 project
COMPAS, grant no. 215175.

8. REFERENCES
[1] M. Baker, M. Ishikawa, S. Matsui, P. Stark, T. Wugofski,

T. Yamakami, and S. McCarron. XHTMLTM basic 1.1. W3C
recommendation, W3C, July 2008. [accessed in March
2010].

[2] Bank for International Settlements. Basel II: International
Convergence of Capital Measurement and Capital Standards:
A Revised Framework - Comprehensive Version.
http://www.bis.org/publ/bcbsca.htm, June
2006. [accessed in March 2010].

[3] R. Capilla, F. Nava, and C. Carrillo. Effort estimation in
capturing architectural knowledge. In ASE, pages 208–217.
IEEE, 2008.

[4] Congress of the United States. Public Company Accounting
Reform and Investor Protection Act (Sarbanes-Oxley Act),
Pub.L. 107-204, 116 Stat. 745.
http://www.gpo.gov/fdsys/pkg/
PLAW-107publ204/content-detail.html, July
2002. [accessed in March 2010].

[5] European Parliament and Council. Directive 95/46/EC on the
protection of individuals with regard to the processing of
personal data and on the free movement of such data.
http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:31995L0046:EN:
NOT, October 1995. [accessed in March 2010].

[6] European Parliament and Council. Directive 2004/39/EC on
markets in financial instruments.
http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:
02004L0039-20060428:EN:NOT, April 2004.
[accessed in March 2010].

[7] D. Falessi, M. Becker, and G. Cantone. Design decicion
rationale: Experiences and steps towards a more systematic
approach. SIG-SOFT Software Eng. Notes 31 – Workshop on
Sharing and Reusing Architectural Knowledge, 31(5), 2006.

[8] C. Hentrich and U. Zdun. Patterns for process-oriented
integration in service-oriented architectures. In Proceedings
of 11th European Conference on Pattern Languages of
Programs (EuroPLoP 2006), Irsee, Germany, July 2006.

[9] T. Holmes, H. Tran, U. Zdun, and S. Dustdar. Modeling
human aspects of business processes - a view-based,
model-driven approach. In I. Schieferdecker and
A. Hartman, editors, ECMDA-FA, volume 5095 of Lecture
Notes in Computer Science, pages 246–261. Springer, 2008.

[10] IEEE. Recommended Practice for Architectural Description
of Software Intensive Systems. Technical Report
IEEE-std-1471-2000, IEEE, 2000.

[11] Information Systems Audit and Control Association. Control
Objectives for Information and Related Technology (CobiT).
http://www.isaca.org/cobit, 1996. [accessed in
March 2010].

[12] International Accounting Standards Committee (IASC)
Foundation. International Financial Reporting Standards.
http://www.iasb.org/IFRSs/IFRS.htm.
[accessed in March 2010].

[13] International Organization for Standardization. ISO
32000-1:2008 document management – portable document
format – part 1: Pdf 1.7. http://www.iso.org/iso/
catalogue_detail.htm?csnumber=51502, July
2008. [accessed in March 2010].

[14] A. G. J. Jansen, J. van der Ven, P. Avgeriou, and D. K.
Hammer. Tool support for architectural decisions. In 6th
IEEE/IFIP Working Conference on Software Architecture
(WICSA), Mumbai, India, January 2007.

[15] P. Kruchten, R. Capilla, and J. C. Duenas. The decision
view’s role in software architecture practice. IEEE Software,
26:36–42, 2009.

[16] P. Kruchten, P. Lago, and H. Vliet. Building up and
reasoning about architectural knowledge. In C. Hofmeister,
editor, QoSA 2006 (Vol. LNCS 4214), pages 43–58, 2006.

[17] A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions,
options, and criteria: Elements of design space analysis.
Human-Computer Interaction, 6(3–4):201–250, 1991.

[18] Ministre de l’économie, des finances et de l’industrie. loi de
sécurité financière.
http://www.senat.fr/leg/pjl02-166.html,
February 2003. [accessed in March 2010].

[19] T. Stahl and M. Völter. Model-Driven Software
Development. John Wiley & Sons, 2006.

[20] The Eclipse Foundation. Xpand. http://www.
eclipse.org/modeling/m2t/?project=xpand.
[accessed in March 2010].

[21] The Netherlands Corporate Governance Committee. The
Dutch corporate governance code.
http://www.commissiecorporategovernance.
nl/page/downloads/CODE%20DEF%20ENGELS%
20COMPLEET%20II.pdf, December 2003. [accessed in
March 2010].

[22] H. Tran, U. Zdun, and S. Dustdar. View-based and
model-driven approach for reducing the development
complexity in process-driven SOA. In W. Abramowicz and
L. A. Maciaszek, editors, BPSC, volume 116 of LNI, pages
105–124. GI, 2007.

[23] J. Tyree and A. Ackerman. Architecture decisions:
Demystifying architecture. IEEE Software, 22(19–27), 2005.

[24] O. Zimmermann, T. Gschwind, J. Kuester, F. Leymann, and
N. Schuster. Reusable architectural decision models for
enterprise application development. In S. Overhage and
C. Szyperski, editors, Quality of Software Architecture
(QoSA) 2007, Lecture Notes in Computer Science, Boston,
USA, July 2007. Springer-Verlag Berlin Heidelberg.

[25] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann.
Combining pattern languages and architectural decision
models in a comprehensive and comprehensible design
method. In Working IEEE/IFIP Conference on Software
Architecture (WICSA) 2008, Vancouver, BC, Canada,
February 2008.

http://www.bis.org/publ/bcbsca.htm
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:02004L0039-20060428:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:02004L0039-20060428:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:02004L0039-20060428:EN:NOT
http://www.isaca.org/cobit
http://www.iasb.org/IFRSs/IFRS.htm
http://www.iso.org/iso/catalogue_detail.htm?csnumber=51502
http://www.iso.org/iso/catalogue_detail.htm?csnumber=51502
http://www.senat.fr/leg/pjl02-166.html
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.commissiecorporategovernance.nl/page/downloads/CODE%20DEF%20ENGELS%20COMPLEET%20II.pdf
http://www.commissiecorporategovernance.nl/page/downloads/CODE%20DEF%20ENGELS%20COMPLEET%20II.pdf
http://www.commissiecorporategovernance.nl/page/downloads/CODE%20DEF%20ENGELS%20COMPLEET%20II.pdf

	1 Introduction
	2 Compliance in Service-Oriented Architectures
	3 View-based Modeling Framework
	3.1 Separation of Concerns
	3.2 Abstraction Levels
	3.3 Integration of Views
	3.4 Example: Travel Booking Process

	4 Design of the Compliance Meta-data View
	5 Generating Compliance Documentation
	6 Related Work
	7 Lessons Learned and Conclusions
	8 References

