
Business Process Extensions as First-Class Entities —
A Model-Driven and Aspect-Oriented Approach

Heiko Witteborg, Anis Charfi, Mohamed Aly, and Ta‘id Holmes

SAP Research Darmstadt
Bleichstr. 8, Darmstadt, Germany

firstname.lastname@sap.com

Abstract. To facilitate customer adaptation, extensibility constitutes an attractive
design choice for providers of business software. However, most works in the
context of business application extensibility are focusing on the code level. Lacking
a conceptual foundation, such extensibility has shortcomings with respect to the
understandability and the development of extensions. Addressing these issues,
this paper presents the novel concept of business process extensions as first-class
entities. We apply a model-driven approach which focuses on the business process
layer and uses aspect-oriented modeling implicitly.

Keywords: process extensions, extensibility, business process modeling, model-driven

1 Introduction

Enterprise resource planning (ERP) and customer relationship management (CRM)
are examples of business applications that support a wide range of standard business
processes. However, the reality shows that companies in the same activity domain (e.g.,
retail or service) may have their own variants of these processes. When looking at diverse
domains one observes that business processes are also performed in different ways. In
fact, the standard processes delivered and implemented by the business software provider
mostly require to be adapted to the particular needs of a certain company running it or to
those of a certain domain. The adaptation of the business applications and their underly-
ing business processes is typically done by implementing extensions. These extensions
are either built by the customer or by a third party such as an independent software
vendor (ISV). In fact, there is an ecosystem of ISVs and consulting organizations around
leading business software providers, which specialize in configuring base software and
building extensions to it. Extensions are owned by the ISVs whereas the base software is
owned by the provider of the business software.

Extending business applications is a complex task for both the application provider
and the extension developer (cf. [1]). Therefore, there is a need to raise the level of
abstraction in order to ease understanding, developing, and managing extensions and
systems that result from base software and extensions. The lack of appropriate models for
extensibility leads to further problems, which are hard to tackle on the code layer. First, it
is challenging to understand a business process that results after several extensions have
been applied to the base software. This is because no appropriate models of the extensions

http://research.taid.holmes.at


exist in code level approaches. Second, understanding which extensions perform which
activities at which points in the base business process is complicated. Therefore, it is
also difficult to identify potential conflicts between extensions without looking deep
into the code. The same applies to the activation and deactivation of extensions, which,
in current approaches, is a topic for expert technical users through complex low-level
configuration and management tools. In this paper we address some of these problems
using a model-driven and aspect-oriented approach for business process extensibility.

Our contributions are three-fold: First, we present a novel approach for defining
business process extensions as first-class entities. This approach focuses on the business
process layer and also includes a mechanism for composing (resp. decomposing) the
extension models defined by the ISVs with (resp. from) the base business processes
delivered by the business software provider. Second, we present a toolset supporting the
proposed approach, which includes an extension editor and model repositories. Starting
from a base process, the editor supports the in-place modeling of extensions as if the
end user was directly modifying the business process. Internally, the toolset extracts the
deltas modeled by the extender into business process extensions. This is transparent to
the modeler (implicit aspect-oriented modeling). Third, we discuss the benefits of our
approach and its application areas to further address the problems mentioned above.

2 Concepts and Tools for Business Process Extensibility

We propose a model-driven and aspect-oriented approach to business process extensibil-
ity. Focusing on the process layer, it enables participants in the ecosystem of the base
software provider to extend the (read-only) process models of the business application,
e.g., to add new activities to the process, to match the needs of a specific domain, or to
integrate with other applications. The extended process is decomposed automatically
and stored in a modular way: the resulting extension encapsulates the modifications that
are associated with a certain concern, ready to be reapplied, or reused in another context.

We exemplarily illustrate our approach using a common CRM process for creating
and approving sales quotations, as shown in Figure 2. In our extension scenario, this
process is extended to integrate customer rating data delivered through an external credit
reporting agency. Based on this additional information, an online shop could lower the
risk of non-payment, e.g., by appropriately setting the payment terms.

In the following, we shortly present the conceptual basis of our approach using a
business process extension metamodel. After that, we describe the main steps in the
extension development approach. Finally, we present the toolset supporting our approach.

2.1 Business Process Extension Metamodel

Figure 1 shows a business process extension metamodel that formalizes the concepts
that enable an ISV to model process extensions as first-class entities. It consists of two
packages: The package processmodel contains the metamodel of the process definition
language used to define the base process. We present a simplistic metamodel consisting
of processes, edges, and vertices to exemplarily show the generic interrelation between



our extensibility concepts and the underlying process definition language 1. The second
part of Figure 1 is the package extensionmodel, which defines the concepts that can
be contained in an extension.

Fig. 1: Process Extension Metamodel

The fragments contain the new process elements introduced by the extension modeler.
It uses the same constructs as the base process modeling language, following a symmetric
approach to composition (cf. [10]), i.e., there is no conceptual distinction between base
process and the extension part. This facilitates the intuitive graphical definition of
extensions, and supports extension of extensions. Figure 2 shows the extended process
of our motivating example, with a fragment consisting of a single task “Get external
customer rating”.

A Modification describes a single extension operation that is performed on a certain
extension point. If extendingPoint is not specified, the modification describes a
deletion. A deletion can be represented by hiding the targeted element, or by showing it
grayed out. In the other case, the modification inserts and connects an extending element
contained in one of the extension’s fragments with the extension point contained in
the base process (hereinafter called binding). Both extension point and extending point
reference single identifiable nodes of the underlying process language, in our generic
case, a single vertex. The binding can easily be represented as an edge in an extended
process, with the towardsExt attribute specifying the direction of the edge.

Grouped using the ModificationSet concept, several bindings can be defined for the
same combination of base process and fragment. In our running example, the additional
task is integrated into the base process as an optional task after “Receive customer
request”; thus, there is a forking edge between these two vertices and a merging edge
targeting the successor vertex, as shown in Figure 2.

1 However, our approach can be applied to any process definition language that formalizes a
process as a flow of tasks, modeled as vertices interconnected via directed edges such as
Business Process Modeling Notation [12] (BPMN) for example.



2.2 Extension Development Approach

The extension development is simplified by the fact that we use the same language for
both the extended process and the base process. However, visualizing the extension part
in the extended process, as well as extracting the extension when the process is saved
requires the extended process model to hold additional information 2; in particular, for
each element, modelId as a reference to the base process or extension the element is
assigned to, and modificationOperation indicating the modification operation.

Creation of Extended Processes Using a special editor, the ISV can specify modifica-
tions directly by drawing them in the diagram of the base process. The newly added or
deleted elements are automatically annotated accordingly. Depending on the graphical
notation of the underlying process language, these annotations can be used to enhance
the visualization of the extended process, e.g., using different background and line colors.
This enables the ISV to intuitively distinguish the base process from the extension parts.
Figure 2 depicts the resulting extended process of our customer rating extension example.

Decomposition of Extended Processes When an extended process is saved, the
extension is extracted automatically and the base process is left unmodified. Our decom-
position algorithm uses the extension annotations to retrieve the list of modified elements
and derive the fragments and modification sets. Listing 1 shows the extension artifact
derived by decomposing our extended example process. It consists of the extension
process with a single fragment and a modification set with two modifications.

Listing 1: Customer Rating Extension
<?xml version="1.0" encoding="UTF-8"?>
<extensionmodel:Extension xmi:version="2.0"˜xmlns:xmi="http://www.omg.org/XMI"

xmlns:extensionmodel="http://extensionmodel/1.0"
name="Customer Rating Extension">

<fragments name="Customer Rating">
<vertices name="Get external customer rating"/>

</fragments>
<modificationSets id="Quote2OrderModifications">

<modifications towardsExt="true" extendingPoint="//@fragments.0/@vertices.0"
baseProcessName="SalesQuotationCreation"
extensionPointName="Receive customer request"/>

<modifications extendingPoint="//@fragments.0/@vertices.0"
baseProcessName="SalesQuotationCreation"
extensionPointName="Check customer credit limit"/>

</modificationSets>
</extensionmodel:Extension>

Composition of a Base Process and Extensions Base processes can be (re)composed
with extensions: First, the modification sets relevant for the selected base process are
retrieved. The corresponding fragment is inserted and annotated as added, and edges
are created to represent the bindings. For a deletion, the extension point is annotated
accordingly. Reapplying the extracted customer rating extension (cf. Listing 1) to the
“Sales Quotation Creation” process restores the extended process shown in Figure 2.

2 To store this information we annotate the extended process using lightweight language-specific
extension constructs. We abstract from concrete annotation implementation in the following,
assuming that the additional extension information is available.



2.3 Tooling

For the accomplishment of an end-to-end solution we implemented a tool for modeling
business process extensions. This tool is supported by one or more model repositories
for storing the base processes and the extensions. While managing extension models
as first-class artifacts in business software systems, these repositories with the tools
help to bridge the gaps between various phases of the engineering lifecycle. We refer
to such a setting as a Model-Aware Service Environment [11] (MORSE). Moreover,
as the repositories store conceptual, platform-independent models (PIMs) they can be
utilized across different products of the business software provider’s portfolio. Our
tooling consists of the following components:

The base business process models of one or more business applications are stored
in the central Process Model Repository. For reference and traceability purposes each
model and model element in the MORSE is identifiable by a Universally Unique Identifier.
The Extension Repository stores business process extension models separately from
the process models although it might utilize the same model repository with the access
rights appropriately set. One reason for this separation is the separate ownership of
the respective models: the base process models are owned by the base software vendor
whereas the process extension models are owned by the ISVs.

Fig. 2: Sales Quotation Creation Process with the Customer Rating Extension

The Process Editor enables the ISV to retrieve and view the base process models
from the Process Model Repository, as well as extensions to be stored in the Extension
Repository. Although having only read access, the editor allows to directly draw a new
extension into the base process diagram or loading and editing an existing extension
– in accordance with the modification restrictions defined by the base process owner.
Moreover, the user can load and reuse an extension in another process context. Saving



the extended process automatically triggers the extraction of the extension as a first-class
entity, stored in the Extension Repository. A screenshot of the tool is shown in Figure 2.

3 Discussion

In this section, we report on relevant design decisions and give some requirements from
practice. We also report on several application areas of our approach.

3.1 Design Decisions and Requirements

In-Place Extension Modeling and Implicit Aspect-Oriented Support One requirement
was to find and leverage a simple approach towards end users. To achieve that we
introduced the technique of in-place extension modeling, which means that an ISV
models the extension in our editor after loading the base business process as if he was
directly modifying that business process. As a result, the extension modeler does not
have to know or understand the metamodel and concepts presented in Section 2.1, unlike
in aspect-oriented approaches such as [8]. This reduces the complexity for end users.

Process Extensions as Modular First-Class Entities An important requirement was
to have a strict separation of the base process model and the extension models. The
base processes are owned by the provider of the business software and extension models
are owned by the ISVs. Further, we had the requirement of being able to compose
multiple extensions from different ISVs with the same business process model. From
this requirement, which is supported through the separation of ownership, we derived
the design decision to have process extensions as modular first-class entities.

3.2 Application Areas

Code and Test Generation The design and development process of business software
extensions may start now from the process extension models. These models – possibly
in conjunction with other models – can serve for generating implementation artifacts
for the extension. Furthermore, the process extension models can also serve as basis for
generating tests to ensure the correct interplay of the extension with the base application.

Documentation The process extension models also serve as a documentation of
an extension. In fact, every potential customer of an extension can now understand its
effects and its interplay with the base business processes (e.g., in case of an extended
process containing multiple extensions).

Extension Governance and Management The proposed approach enables a better
understanding of the business process resulting after the deployment of several extensions.
For example, a customer organization may buy the basis business application and gets the
respective process models. When each ISV extending that software provides a process
extension model as proposed in our approach a view with the complete process including
the base process and extensions can be generated for the customer organization. A
sample process view created by the composition mechanism is presented in Section 2.
This view not only serves the understandability but also can ease the management of
extensions and their dependencies and allows the detection of potential conflicts.



4 Related Work

Reference Process Models Balko et al. [2,3] propose a conceptual framework
using provider defined reference workflow processes with extension points. Reference
processes are standard business processes that are realized by the software provider
following a workflow approach. The provider defines extension points where an extender
can plug in his extensions in the form of process fragments. Extensions should then be
managed and called at runtime by means of an extensibility framework (similar to an
extension aware BPEL engine or an aspect-aware BPEL engine as in AO4BPEL [7]).
That papers remain on the conceptual level providing only a high level description of the
framework without the implementation of the presented concepts.

Adaptation Techniques Although the variety of business service types and natures
is very broad (cf. [6]), a common characteristic among all services is the process of
value creation between multiple parties in a flow of interaction/communication [9]. An
extension of a business service therefore adds flow elements to the underlying process
model, with the goal of increasing the service’s business value in a specific scenario.
The idea of extending, reusing, and adapting a base model to construct models for a
concrete application domain is subject of the research area of reference modeling [4].
Concerning the adaptation techniques of reference models, vom Brocke [5] identifies five
mechanisms such as configuration, aggregation, instantiation, specialization, and analogy.
To ensure the applicability for our approach in a realistic business service network,
the adaptation technique should allow (a) an automated adaptation process and (b) a
maximum of flexibility for an ISV, while ensuring (c) the process owner’s business need
of having compliant and consistent core processes. The first requirement, an analogy-
based extension is too vague to be automated. Requirement (b), both configuration and
instantiation lack flexibility, because the modeler of the base process would have to
foresee all potential extensions (or, at least, the extension points). For specialization,
problems may arise in regard to requirement (c) as this technique empowers an ISV to
fundamentally change the base process.

Aspect-Oriented Process Modeling In a previous work [8], we defined an aspect-
oriented extension to BPMN called AO4BPMN. This extension allows to model aspects
in business processes. Several differences exist between that work and the work presented
in this paper. In AO4BPMN aspects are modeled explicitly by an expert user whereas
here process extensions are extracted automatically by the toolset behind the scenes.
Moreover, AO4BPMN extends the metamodel of BPMN with aspect-oriented concepts
whereas in this work the same process modeling language is used for both the base
process and the extensions. AO4BPMN is a powerful language with a rich join point
model and pointcut language. In the current work the extension process elements and
the base process elements are related through the binding. There is no explicit pointcut
and no pointcut resolution (and thus no quantification). On the other hand AO4BPMN is
complex for a business user and requires an understanding of aspect-oriented concepts.

5 Conclusion

Extensibility of business applications involves several stakeholders in the ecosystem
of the business software vendor such as ISVs who build extensions on top of the base



software and customers who use the base software together with these extensions. All
of these roles need to better understand the behavior of extensions, their effects on
the base business process, and also potential conflicts between different extensions.
In this paper we presented a model-driven and aspect-oriented approach and a toolset
for defining business process extensions as first-class entities. Our approach addresses
the limitations of state-of-the-art approaches and – through an implicit aspect-oriented
modeling – makes extension development and management more accessible to business
users. We also discussed several application areas that are enabled by this approach in
our industrial context.

Acknowledgments The authors would like to thank Batbold Bilegsaikhan for his implementation
of the customer rating extension and Wei Wei (危巍) for his contributions to the modeling
environment prototype. The work presented in this paper was performed in the context of the
Software-Cluster project Emergent. It was partially funded by the German Federal Ministry of
Education and Research under grant no. 01IC10S01.

References
1. Aly, M., Charfi, A., Mezini, M.: On the extensibility requirements of business applications.

In: International Workshop on Next Generation Modularity Approaches for Requirements
and Architecture, NEMARA. ACM, Postdam, Germany (March 2012)

2. Balko, S., ter Hofstede, A.H., Barros, A.P., Rosa, M.L., Adams, M.J.: Controlled flexibility and
lifecycle management of business processes through extensibility. In: Enterprise Modelling
and Information Systems Architectures (EMISA), Proceedings of the Workshop. GI (2009)

3. Balko, S., ter Hofstede, A.H., Barros, A.P., Rosa, M.L., Adams, M.J.: Business process
extensibility. Enterprise Modelling and Information Systems Architectures Journal (July
2010)

4. Becker, J., Beverungen, D., Knackstedt, R.: The challenge of conceptual modeling for product-
service systems: status-quo and perspectives for reference models and modeling languages.
Inf. Syst. E-Business Management 8(1), 33–66 (2010)

5. Brocke, J.V.: Referenzmodellierung - Gestaltung und Verteilung von Konstruktionsprozessen,
Advances in Information Systems and Management Science, vol. 4. Logos (2003)

6. Cardoso, J., Barros, A.P., May, N., Kylau, U.: Towards a unified service description language
for the internet of services: Requirements and first developments. In: IEEE SCC. pp. 602–609.
IEEE Computer Society (2010)

7. Charfi, A., Mezini, M.: AO4BPEL: An aspect-oriented extension to BPEL. World Wide Web
Journal: Special Issue: Recent Advances in Web Services 10(3) (March 2007)

8. Charfi, A., Müller, H., Mezini, M.: Aspect-oriented business process modeling with
AO4BPMN. In: Modelling Foundations and Applications, 6th European Conference. LNCS,
vol. 6138, pp. 48–61. Springer (2010)

9. Chesbrough, H., Spohrer, J.: A research manifesto for services science. Commun. ACM 49(7),
35–40 (2006)

10. Harrison, W.H., Ossher, H.L., Tarr, P.L.: Asymmetrically vs. symmetrically organized
paradigms for software composition. Tech. Rep. RC22685 (W0212-147), IBM (Dec 2002)

11. Holmes, T., Zdun, U., Dustdar, S.: MORSE: A model-aware service environment. In: Proceed-
ings of the 4th IEEE Asia-Pacific Services Computing Conference (APSCC). pp. 470–477.
IEEE (Dec 2009)

12. Object Management Group, Inc.: Business Process Model and Notation (BPMN), Version 2.0
(Jan 2011), http://www.omg.org/spec/BPMN/2.0, [accessed in August 2012]

http://www.software-cluster.org/
http://www.omg.org/spec/BPMN/2.0

	Business Process Extensions as First-Class Entities — A Model-Driven and Aspect-Oriented Approach
	1 Introduction
	2 Concepts and Tools for Business Process Extensibility
	2.1 Business Process Extension Metamodel
	2.2 Extension Development Approach
	2.3 Tooling

	3 Discussion
	3.1 Design Decisions and Requirements
	3.2 Application Areas

	4 Related Work
	5 Conclusion


