
Facilitating Development and Provisioning of Service Topologies
through Domain-Specific Languages

Ta’id Holmes
Products & Innovation, Deutsche Telekom AG

Darmstadt, Germany
t.holmes@telekom.de

Abstract—In a model-driven engineering (MDE) context, the
coordination of different roles such as enterprise architects
and developers can be supported when dependencies between
roles and artifacts are stated. Similarly, provisioning and
deployment of service topologies can be facilitated. For speci-
fying dependencies, an editor permits to define roles, artifacts,
services, and service topologies in descriptive domain-specific
languages (DSLs). Supporting coordination and automation,
utilities are generated that synchronize workspaces, produce
notifications, prepare the provisioning of service topologies, and
perform their deployment. For showcasing the DSL editors
and the coordination and automation tools a case study from
a machine-to-machine context is taken. Addressing change
impact and provisioning issues by minimizing turnaround
cycles, the demonstration reveals possibilities of how to support
MDE processes in the context of service topologies and shall
foster a discussion on the potentials with regard to enterprise
applications in general.

Keywords-automation, coordination, development, DSL,
MDE, provisioning, service topology

I. INTRODUCTION

The engineering of enterprise applications involves various
stakeholders such as architects (e.g., business and enterprise
architects), developers (e.g., service and web engineers),
and testers. Model-driven engineering (MDE) permits to
incorporate different roles in the engineering process, each
generally working with a distinct set of artifacts. For
example, a textual or graphical domain-specific language
(DSL) can offer an access for the specification of aspects
of an enterprise application. This is because the DSL’s
corresponding metamodel inherently has a defined level of
abstraction, making it easy for a respective role to relate to.
Avoiding media discontinuity through model transformations,
model-based approaches help to master complexity and
proved to be efficient and viable.

Because model transformations are automated in MDE,
regeneration is cheap and can take place continuously. Thus,
MDE approaches permit iterative development to take place.
In case of a service topology, i.e., a set of interdependent
services specified and developed by a multitude of roles,
the challenge of minimizing turnaround cycles re-emerges.
This is because development needs to be coordinated and
deployment of software as part of the service topology

is complex. While supporting the various roles and the
simultaneous development of an enterprise application in
form of a service topology, provisioning thus needs to be
automated as well.

In fact, the coordination of the various roles during devel-
opment, their deliverables, and the application deployment
is not covered by the MDE methodology and needs to be
addressed. For example, a model change undertaken by an
enterprise architect may have an impact for certain developers
working with applied transformations. That is, the change
needs to be propagated and communicated. This is costly
in terms of time and creates an overhead to the engineering
project. Ideally, all roles participating in the engineering
process would be timely notified and provided with models
or appropriate transformations. In this regard, it must also be
considered that different developers may work with different
technologies. That is, a code generator needs to be selected
according to the respective target technology.

To exemplify, consider a service engineer who utilizes
XML technologies, while another engineer working on a
different part of the service topology accesses a database
using object-relational mapping (ORM) software. Finally, a
web developer processes data in JavaScript Object Notation
(JSON). While all of the roles may work with particular
views, an information model would comprise all of the
concepts in required detail. As software code (e.g., an XML
schema and an ORM layer) is generated from the model
and provided for the roles, such a model is entangled with
the systems it reflects. Within the scope of the model, this
permits governance over the service topology and enforces
conformance to the enterprise architecture.

For facilitating the coordinated development and automated
deployment of service topologies, descriptive DSLs are pre-
sented (see Section III) for declaring artifacts, roles, services,
and their dependencies. Without imposing rigid processes, the
description of an engineering project as expressed in the DSLs
(referred to as DSL programs) serves as a basis for generating
coordination and automation tools such as for synchronizing
workspaces, producing notifications, and provisioning of
services. The demonstrator thus utilizes a DSL editor and
showcases generated coordination and automation tools using
a case study from a machine-to-machine context.

http://t.holmes.info/research
http://telekom.com
http://ietf.org/rfc/rfc4627.txt


The remainder of this paper is structured as follows:
Section II presents a motivating example and mentions
related problems. The approach is presented in Section III.
Next, Section IV revisits the case study by illustrating the
applicability of the approach followed by a discussion in
Section V. Finally, Section VI concludes.

II. MOTIVATING SCENARIO

For illustrating a motivating example, let us consider a
machine-to-machine (M2M) context in which a proof of
concept (PoC) is to be developed as part of a service topology.
In this scenario, it suffices to develop and demonstrate
the PoC using a rudimentary setup. M2M devices submit
data from sensors to an M2M gateway which relays data
to a backend. There, a PoC implementation correlates the
sensor data with user data and data from other sources and
stores results in a database. Finally, a dashboard provides a
reporting interface. Various roles are involved in realizing
the scenario. In particular, an enterprise architect produces
an information model describing the sensor data. A service
developer, implementing the PoC, processes the data using
XML technologies and uses an ORM layer for persisting
results in a database. Another service developer implements
representational state transfer (REST) services that offer
results in JSON to web clients. Finally, a web developer
accesses these services with a cross platform web application,
realizing a dashboard.

Part of the development is model-driven. Notably, the
information model constitutes the basis for various conform-
ing instances used by different roles. As a consequence,
multiple stakeholders exist for the information model. While
the model is technology agnostic, code generators transform
the information model to specific technologies. In this
example, the model is transformed to an XML schema
from which object-oriented Python code is generated. Using
SQLAlchemy as an ORM layer, additional code for the
mapping is generated from the information model.

The following challenges can be observed for this scenario:
If the model changes, depending code needs to be regenerated
and respective roles need to be informed. Consecutively,
depending services need to be redeployed. The resulting
coordination needs, transformation steps, and deployment
tasks protract turnaround cycles. Besides the involved cost,
this is problematic when striving for continuous and agile
development. The described change impact may even impede
the proper adoption of MDE in practice and lead to situations
in which model-driven transformation and generation steps
are not performed iteratively. That is, generated software
evolves without synchronizing the models diverging enter-
prise architecture and development. Thus, undermining MDE
approaches and their governance, initially constituting models
no longer truthfuly reflect the systems.

III. APPROACH

For addressing the problems mentioned, i.e., to minimize
turnaround cycles, the coordination during development and
the provisioning needs to be facilitated. This can be achieved
and automated if dependencies within engineering processes
are known. For formalizing these, a model-based approach
using DSLs is proposed.

Roles, artifacts, services, and service topologies are de-
scribed in DSLs (see Sections III-A and III-C). Conforming
DSL programs are parsed and their models are transformed
to coordination and provisioning tools (see Sections III-B
and III-D). The former category comprises tools for syn-
chronizing workspaces and for producing notifications for
informing roles. For the provisioning of the service topology,
a script is generated that automates the packaging, uploading,
and deployment of the services.

For management purposes and for realizing these use
cases in a service-oriented fashion, an MDE server (cf. [1],
[2]) is deployed. It comprises a repository (cf. [3], [4],
[5], [6]) for managing MDE artifacts (i.e., metamodels and
models) and services for realizing MDE activities (i.e., model
transformations). First, a DSL program of a project for a
service topology is registered at the MDE server. Invoking a
generated service, the workspaces are then initialized in a
version control system (VCS). In addition, tools are deployed
that interact with the MDE server and notify roles depending
on artifacts that are contained in the respective changeset.
Finally, for the provisioning of the service topology the
workspaces are processed for preparing the provisioning and
services are packaged, uploaded, and deployed.

A. Describing Roles, Artifacts, and Services

A grammar for an external DSL has been defined using
the Eclipse Xtext (Xtext) framework. A generated DSL
editor – offering syntax highlighting, code completion, and
validation – permits to describe the various roles, artifacts,
and services in a textual manner. An artifact represents
one or more files. A file as well as an artifact may
specify a (meta-)artifact, e.g., for indicating a type or format.
A role states what artifacts it consumes and produces.
A service may depend on (dependsOn) some of these
artifacts. In addition it consumes and/or produces runtime
data. Roles and services may specify a transformation format
or serialization for referenced artifacts. This leverages the
fact that model transformations exist for models (or DSL
programs) conforming to metamodels (or DSLs). Relating
to the runtime it can be specified that a certain serialization
is used (e.g., XML or JSON).

B. Workspace Synchronization

By stating which artifacts are produced or consumed by
roles and services, the descriptive DSL program implicitly
defines dependencies that require synchronization. These de-
pendencies can directly be translated into publish / subscribe

http://sqlalchemy.org
http://eclipse.org/Xtext


patterns. That is, publishers are roles producing artifacts and
subscribers are roles that consume artifacts. Presuming all
roles work with a VCS for managing development artifacts,
i.e., for committing or checking out artifacts, respective
publish / subscribe patterns can directly be integrated into
the VCS. At this level post-commit hooks permit to realize
programmatic notifications. Thus, a shell script is generated
and deployed as a hook in a service topologies’ repository
that analyzes a changeset for subscribed artifacts. For all
transformation formats that are specified by subscribers,
required model transformations are applied by invoking
the respective services from the MDE server. Resulting
artifacts are provided to the roles by placing them into
their workspaces. Finally, subscribers are notified by mail if
enabled.

C. Service Topologies – A High-Level Description

The services defined in the previous DSL (see Sec-
tion III-A) constitute elements of the targeted service topolo-
gies. For describing a service topology at a high level of
abstraction, another DSL has been defined. Using Xtext’s
import statement, it makes use of language referencing
(cf. [7, p. 119]) for realizing separation of concerns and
for making definitions reusable across service topologies. In
this DSL, a hostingUnit comprises services. After code
generation, it is mapped to a server instance or a cluster,
using an infrastructure as a service (IaaS) provider. The
services which are grouped in hostingUnits may reference
previously defined services (e.g., software as a service (SaaS)
as part of an enterprise application) or relate to general
services (e.g., platform as a service (PaaS)). Services may
depend on other services (implies) forming a service stack.
For example, an SaaS may build on a PaaS. At an IaaS level,
ports can be specified for services they listen to. For not
exposing them publicly, they can be quantified as internal.

While these aspects are covered by the DSL and respective
provisioning steps are realized in code generation, the DSLs
do not contain sufficient detail for automating the overall
provisioning. To fill the gap between the high-level descrip-
tion and the low-level, technical configuration management,
the approach integrates with Puppet as explained next.

D. Service Provisioning

Similarly to the dependencies between roles as leveraged
for the synchronization of workspaces, also the dependencies
between hostingUnits, services, and their dependent
artifacts can be used for easing the provisioning of the
service topology. For this, an artifact a service dependsOn

is retrieved from the workspace of the role that produces
the artifact and is then placed in a Puppet module. A
hostingUnit is transformed to a Puppet node definition and
includes Puppet modules for services. For this, the transitive
closure of the services contained in a hostingUnit is

calculated. For services that are not quantified as internal,
enabling security rules are generated for respective ports.

By executing a generated script that utilizes IaaS clients the
IaaS of the service topology is provisioned. A management
server, acting as the Puppet master, distributes and deploys
the configuration and software to clients. For this, cloud-init
directives for configuring the Puppet client are passed as
user-data when launching server instances.

When changes occur in the workspace, a script can
be triggered that pushes incremental changes to the IaaS.
This minimizes turnaround cycles and facilitates iterative
development and continuous delivery.

IV. REVISITING THE CASE STUDY

A DSL program describing the roles, artifacts, services,
and their dependencies of the scenario from Section II was
created. Once registered at a MDE server, workspaces for
the roles were initialized in Git as a VCS. After an enterprise
architect created an information model describing sensor
data, resulting artifacts were distributed. In the DSL program
it was specified that the first service engineer required the
information model in form of an XML schema (consumes
InformationModel as XSD) while another expected an
ORM definition based on the same information model. Thus,
XML schemas and an ORM definition were placed in the
workspaces of the respective developers which were notified
by mail.

Once the missing development artifacts had been imple-
mented and were available in the VCS, a deployment process
could be triggered. That is, the entire service topology from
IaaS to SaaS was provisioned through generated IaaS clients
and available Puppet modules. The latter were partially
generated, i.e., their contained artifacts were synchronized
with the workspaces. The service topology comprising the
PoC was provisioned within a matter of minutes. For this
an IaaS provider based on OpenStack was utilized.

When the information model changed, the workspaces
were updated using required transformations. A continuous
integration server could inform developers of incompati-
bilities and the need to make subsequent updates. Finally,
iterative development was facilitated by a generated utility
that redeploys the service topology by considering the
differential changes.

V. DISCUSSION & RELATED WORK

The approach presented is generic and neither limited to
the case study nor its context. Relating to roles, artifacts, and
services, it is applicable to any MDE project. A presumption,
however, is the use of a common VCS among all roles and
the existence of service-oriented model-transformations as
realized by an MDE server.

The fact that the process of providing developers with
required artifacts is automated supports the proper use
of MDE in complex projects such as the development

http://puppetlabs.com
http://puppetlabs.com
http://puppetlabs.com
http://puppetlabs.com
http://puppetlabs.com
http://launchpad.net/cloud-init
http://puppetlabs.com
http://git-scm.com
http://puppetlabs.com
http://openstack.org


of enterprise applications or service topologies. From a
developer point of view, there is a need to communicate
with enterprise architects when a change relating to a model
is desired. This procedure ensures governance over the system
and through the generated synchronization tools strengthens
collaboration between the different stakeholders.

The approach presumes that there is a rather clear idea what
roles participate in the engineering process, what artifacts
they produce and consume, and which artifacts are required
for assembling the services. At the beginning of a project,
this may not always be the case, however. While the act of
formalizing these aspects can be beneficial for a project, the
final set from an implemented service topology may only be
known a posteriori. Thus, a model that describes a service
topology, its services, artifacts, and roles involved in the
engineering project needs to be updated regularly. This can
be done manually by a project administrator or directly by
developers.

One possibility to support and (partially) automate the
maintenance of the model is to analyze the VCS as elaborated
by Sarma et al. [8] (cf. also Cataldo and Herbsleb [9]). For
this, the results can be taken as a reference for the artifacts
that are produced by a role. That is, the fact that files exist
in a development area (not containing provided artifacts) of
a roles’ workspace implicitly denotes that they are produced
by the respective role. Following this idea, the explicit model
from a DSL program can be made implicit when backed
by appropriate synchronization tools. In this regard and for
supporting an inferred model related research on coordination
needs as found in Blincoe [10] has to be incorporated. In
contrast to the literature, one distinction of the presented
work is the focus on MDE with its singularity regarding
model transformations.

Regarding provisioning, the OASIS Topology and Orches-
tration Specification for Cloud Applications (TOSCA) stan-
dard (cf. [11]) addresses the description of service topologies
for deployment and migration scenarios. Without further tool
support it requires experts to realize the desired automation.
In contrast, the high-level DSL (see Section III-C) abstracts
from many details and is tailored toward end-users. While it
currently integrates with Puppet after model transformation
it may be used to generate TOSCA making TOSCA and
related technologies accessible.

VI. CONCLUSION

Whereas MDE embraces multiple roles, the methodology
does not cover coordination issues, e.g., resulting from a
change impact. Based on DSLs, a model-based approach has
been presented that exploits specified dependencies between
roles, artifacts, services, and service topologies. Utilities are
generated and employed for automating synchronization of
workspaces and provisioning of entire service topologies.
Thus, an MDE process for enterprise applications can

be facilitated by describing respective roles, artifacts, and
services.

ACKNOWLEDGMENTS
The author would like to thank Robert Schwegler for fruitful discussions,

reviewers for providing valuable comments, and Mike Machado for
proofreading.

REFERENCES

[1] X. Blanc, M.-P. Gervais, and P. Sriplakich, “Model bus:
Towards the interoperability of modelling tools,” in MDAFA,
ser. Lecture Notes in Computer Science, U. Aßmann, M. Aksit,
and A. Rensink, Eds., vol. 3599. Springer, 2004, pp. 17–32.

[2] T. Holmes, U. Zdun, and S. Dustdar, “MORSE: A Model-
Aware Service Environment,” in Proceedings of the 4th
IEEE Asia-Pacific Services Computing Conference (APSCC),
M. Kirchberg, P. C. K. Hung, B. Carminati, C.-H. Chi,
R. Kanagasabai, E. D. Valle, K.-C. Lan, and L.-J. Chen, Eds.
IEEE, Dec. 2009, pp. 470–477.

[3] K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger,
W. Schwinger, M. Seidl, and M. Wimmer, “AMOR – towards
adaptable model versioning,” in 1st International Workshop
on Model Co-Evolution and Consistency Management, in
conjunction with MODELS ’08, 2008.

[4] E. Stepper et al., “Connected Data Objects (CDO) model
repository,” The Eclipse Foundation, 2005, [accessed in June
2014]. [Online]. Available: http://eclipse.org/cdo

[5] M. Kögel and J. Helming, “EMFStore: a model repository
for EMF models,” in ICSE (2), J. Kramer, J. Bishop, P. T.
Devanbu, and S. Uchitel, Eds. ACM, 2010, pp. 307–308.

[6] L. G. P. Murta, H. L. R. Oliveira, C. R. Dantas, L. G. Lopes,
and C. M. L. Werner, “Odyssey-SCM: An integrated software
configuration management infrastructure for UML models,”
Sci. Comput. Program., vol. 65, no. 3, pp. 249–274, 2007.

[7] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. C. L. Kats, E. Visser, and G. Wachsmuth, DSL Engineer-
ing - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

[8] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantı́r: Raising
awareness among configuration management workspaces,” in
ICSE, L. A. Clarke, L. Dillon, and W. F. Tichy, Eds. IEEE
Computer Society, 2003, pp. 444–454.

[9] M. Cataldo and J. D. Herbsleb, “Coordination breakdowns
and their impact on development productivity and software
failures,” IEEE Trans. Software Eng., vol. 39, no. 3, pp. 343–
360, 2013.

[10] K. Blincoe, “Timely detection of coordination requirements
to support collaboration among software developers,” in ICSE,
M. Glinz, G. C. Murphy, and M. Pezzè, Eds. IEEE, 2012,
pp. 1601–1603.

[11] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA:
Portable Automated Deployment and Management of Cloud
Applications,” in Advanced Web Services, A. Bouguettaya,
Q. Z. Sheng, and F. Daniel, Eds. Springer, 2014, pp. 527–
549.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://eclipse.org/cdo

	I Introduction
	II Motivating Scenario
	III Approach
	III-A Describing Roles, Artifacts, and Services
	III-B Workspace Synchronization
	III-C Service Topologies – A High-Level Description
	III-D Service Provisioning

	IV Revisiting the Case Study
	V Discussion & Related Work
	VI Conclusion
	References

