
Facilitating Agile Prototyping of
Cloud Applications — A Model-Based Approach

Ta’id Holmes
Infrastructure Cloud, Deutsche Telekom Technik GmbH

Darmstadt, Germany
t.holmes@telekom.de

Abstract—Modern cloud applications, generally, demand com-
plex service topologies, e.g., for meeting scalability, maintenance,
or security requirements. Thus, often, it is desirable to increase
the complexity of service topologies in cloud applications. The re-
quired changes, however, may constitute a burden for improving
cloud applications. Changes, overall, are undertaken frequently
in prototyping or when adopting agile development. Their costs
correlate with the number of people involved. For facilitating ag-
ile prototyping of cloud applications this demonstration presents
a model-based approach incorporating different roles. Using,
integrating with, and building on top of open-source projects, it
comprises domain-specific language editors and showcases their
use and the realized automation fostering iterative development.

Index Terms—automation, agile, application, cloud, DSL,
model-based, prototyping, provisioning, service topology

I. INTRODUCTION

For various reasons, modern cloud applications are composed
of increasingly complex service topologies (cf. [1]). Factors
that contribute to the complexity of service topologies are the
ability to scale out services for meeting varying user loads,
security requirements that demand the separation of application
logic as well as of data, and maintenance considerations that
foster distribution of self-contained services for decoupling
their lifecycle.

For expressing and capturing service topologies, the OASIS
Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) standard 1 provides a metamodel. When
describing a cloud application in terms of a metamodel and
when following a model-driven engineering (MDE) approach,
provisioning can be automated (cf. [2]). Yet, development of
a cloud application remains difficult as its service topology
needs to be modeled and the various services implemented. In
an agile practice, the architecture and implementation of cloud
applications usually experiences early and frequent changes
such as refactorings. For example, the topology may be changed
in a way that requires alignment of the model, e.g., when
services are split into distributed entities. At the same time,
the respective services need to be adapted as well.

Multiple roles with particular responsibilities are involved in
the engineering process, such as architects, test developers, and
service engineers – each one having a different set of expertise.
For realizing a new cloud application an enterprise architect
performs a functional analysis and aligns architectural building

1http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

blocks (ABBs) with software building blocks (SBBs) (cf. [3]).
The service topology, that comprises latter building blocks, may
be modeled by a team of experts. Some services are available
off the shelf, while others need to be implemented by service
engineers. Deployment services automate the provisioning of
different stages such as for testing or pre-production. Finally, a
continuous integration service executes various tests that have
been implemented by test developers.

In case of iterative development all of these roles repeatably
need to coordinate their activities. If a cloud architect would
like a particular service to be decoupled from another because
of scalability issues the alignment of building blocks may need
adjustment, the model reflecting the service topology needs
to be changed, tests may have to be adapted, and service
implementations have to be modified.

For lowering the burden of improving the cloud application
accordingly the overall turnaround time shall be kept as short
as possible in such cases. With a multitude of people and roles
involved, agile development of complex cloud applications
is challenging: Most of all, coordination needs have to be
addressed. Next, development of individual services needs
to be facilitated in a sense that integration into the service
topology is eased. Finally, overall automation is required.

Tackling these issues, the demonstration proposes a model-
based approach and presents a toolset comprising domain-
specific language (DSL) editors for facilitating agile prototyping
of cloud applications. Showcasing an overall example, it
combines two former contributions: Addressing coordination
needs, a descriptive DSL [4] permits to define roles, artifacts,
and services. The alignment of ABBs and SBBs can be
undertaken by an enterprise architect using another DSL which
is also used for describing the provisioning of the cloud
application [5]. Using a running example, this demonstration
describes the overall process, artifacts, and tools involved.
Abstracting from infrastructure as a service (IaaS) providers,
the approach automates various tasks and enables developers
to incrementally deploy cloud services facilitating iterative
prototyping of cloud applications.

The remainder is structured as follows: Section II introduces
the running example of the demonstration by describing its
context and by characterizing related problems as a further mo-
tivation. The approach using the running example is presented
in Section III. The work is compared to some related work in
Section IV and Section V concludes.

http://t.holmes.info/research
http://telekom.com
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

II. RUNNING EXAMPLE: CONTEXT AND MOTIVATION

Let us now consider an industrial machine-to-machine
(M2M) context in which a new business idea arose. As part of
the value proposition it envisages the correlation of sensor data
with other data and the visualization of results in a dashboard. In
this scenario M2M devices emit data from sensors to an M2M
gateway. A backend server receives and processes aggregated
sensor data from these gateways. For this, the data is normalized
and correlated with user data and data from an external data
source. Results are stored in a database and visualized in a web
application. Figure 1 depicts a rudimentary server landscape
for the M2M scenario.

Various roles participate in the engineering: among them
are service and web engineers that implement different parts
of a minimum viable product (MVP) (see below) as well as
architects that describe the functional architecture.

Dashboard

Web
Server

Publish/Subscribe

MQTT

Broker

Converters Sensors

Business
Intelligence

Database Analytics Web
Browser

Figure 1. Server Landscape of a Machine-to-Machine Scenario

Following the idea of the lean startup philosophy [6] the
value proposition of the business idea is to be tested with
potential customers. For this, prototyping constitutes a suitable
approach for the (rapid) development of a MVP (cf. [7]) and
for gaining findings such as customer requirements.

In situations in which products depend on several cloud
services a platform as a service (PaaS) may provide a suitable
basis for the development and deployment of software as a
service (SaaS). It needs to cover the requirements of the product
in terms of deployed technologies and available cloud services.
For the development of a MVP the decision to deploy a (certain)
PaaS may be an early decision to take. Indeed, one of the
principles of lean management is deferring decisions for being
able to also consider new information.

As an alternative and as exercised in the demonstration, the
entire cloud stack from IaaS to SaaS – realizing the MVP –
needs to be described for cloud provisioning and deployed.
This is particularly interesting when customized cloud stacks
are preferred over a uniform cloud stack or a PaaS. At the same
time the specification and deployment of a customized cloud
stack, e.g., in TOSCA without further tool support, requires
expert knowledge. This burden may prevent a project to opt
for a tailored cloud setup and hinder lean development.

For realizing the MVP the functional architecture of the
cloud application needs to become manifested in tangible
cloud services and resources. The mapping from ABBs to
SBBs – performed by architects (indicated with Role A) – is
shown in the top three levels of Figure 2. Describing the cloud
provisioning, the services are associated with server instances

TEST

Concrete
Infrastructure

DEV (EC2 IaaS Model)

2

Transformation

Abstract
Infrastructure

(Provisioning DSL)

Hosting Unit Hosting Unit Hosting Unit Hosting Unit

Mapping

Concrete SW-
Architecture

Mapping

Abstract SW-
Architecture

A

Mapping

Functional
Architecture A

PostgreSQL
C

PoC
Part 2 B

PoC
Part 3 B

PoC
Part 1 B

Apache
HTTP C

MQTT
Broker C

Web
Server

Database
Server

Analytics
Messaging

Platform
Web

Application
Sensor

1

Dashboard
Business

Intelligence
Converter Broker Sensor

Figure 2. From Design to Deployment of the Cloud Application

via hosting units. Finally the development of the various
parts of the MVP – as performed by software developers
(Role B) and configuration management (CM) experts (Role C)
– requires coordination between the roles. Finally their services
have to be deployed (realized with Transformations 1 and 2).
As indicated at the bottom, this may occur for multiple stages
of the engineering lifecycle (e.g., DEV or TEST).

A lack of automation renders the process – consisting of a
multitude of steps – time-consuming and costly. As a result,
iterative cycles involving the reprovisioning of (parts of) the
service topology may be avoided. Decreasing agility, this may
proof problematic at an early phase of product development
such as when developing a MVP. Besides the loss of flexibility
(e.g., as required when performing adjustments), the complexity
of the overall process may render effective participation of
architects problematic.

III. DOMAIN-SPECIFIC LANGUAGES FOR FACILITATING
THE ENGINEERING OF CLOUD APPLICATIONS

For addressing the issues mentioned in the introduction
and as further elaborated in the previous section, a model-
based approach is proposed. That is, separation of concerns
is realized between architecture, functionality, and technology
platforms while automating provisioning and deployment in a
role-based development process. After giving an overview, the
use of the DSLs is illustrated by means of the running example.
The demonstrator entirely relies on open source software: The
Eclipse Modeling Framework (EMF) 2 was chosen with Xtext
for defining the DSLs and for realizing respective editors
and Xtend for implementing the model transformations. At
runtime and besides the resulting DSL editors, Git 3 is used
as version control system (VCS), and Puppet 4 for the CM.
Finally, OpenStack 5 serves as an IaaS solution.

2http://eclipse.org/modeling/emf
3http://git-scm.com
4http://puppetlabs.com
5http://openstack.org

http://eclipse.org/modeling/emf
http://git-scm.com
http://puppetlabs.com
http://openstack.org
http://eclipse.org/modeling/emf
http://git-scm.com
http://puppetlabs.com
http://openstack.org

Cloud Application

Software
 PoC for the

M2M Scenario

Platform
 Mosquitto
 PostgreSQL
 Apache HTTP

Infrastructure
 Members
 Volumes
 Security Groups
 Server

IaaS Provider

Code
Generation

 set up infrastructure
 install CM clients
 run CM agents

CM Server
• install

platform
• deploy SW

Cloud-Init
Code

CM Manifests

CM Modules
Version Control System

Workspaces

Coordination Tools

Coordination DSL Program

artifact PoC_artifact1

role "SWDeveloper"
produces PoC_artifact1

service PoC_part1
dependsOn PoC_artifact1

 EC2 IaaS Model

 Abstract IaaS Model

Provisioning DSL Program

W7 urEnvironment project M2M_PoC
costCenter "123456789"

profile ThreeStage

hostingUnit sensor stage DEV TEST
 service Publisher

hostingUnit broker
 service Broker

Model Transformation

Model Transformation

Figure 3. Overview of the Model-Based Approach for the Development and Continuous Deployment of Cloud Applications

A. Approach Overview

In addition to Figure 2, a technical overview of the model-
based realization is depicted in Figure 3. The cloud provisioning
is described using a DSL as shown in the upper left part of
the figure. Through a sequence of model transformations an
IaaS consumer is generated that realizes the provisioning of
cloud infrastructure services. Platform and software services
as referenced in the DSL program are provisioned using a CM
system. CM modules are looked up for such services and a
CM server is instructed accordingly while server instances are
provisioned with CM clients.

A coordination DSL program declarativly describes roles,
artifacts, services, and dependencies between these. Coordi-
nation tools are generated that interplay with a VCS and
the workspaces of stakeholders. For developed services, CM
modules are prepared in addition and built for further simpli-
fying the overall engineering process while profiting from the
functionality and automation as realized by the CM system.

B. Business Idea and Functional Analysis

Starting from the business idea from Section II, archi-
tects conduct a functional analysis. The resulting functional
architecture comprises sensors, a broker, converters,
a business intelligence (BI), and a dashboard as
shown in Figure 2. Resulting ABBs are sensors, a
messaging platform, an analytics engine, a database

server, a web server, and a web application. Using
a DSL editor and profiting from syntax highlighting, code
completion, and scoping as shown in Figure 4, the ABBs
are associated with SBBs (i.e., Mosquitto as a MQ Telemetry
Transport (MQTT) broker, a PostgreSQL server, an Apache
HTTP server, and three different parts of a proof of concept
(PoC) implementation). The abstract building blocks are so
associated with concrete building blocks to be deployed and
are used (i.e., referenced) for the provisioning as shown later.

C. Domain-Specific Language for Cloud Provisioning

The DSL program in the upper left part of Figure 3
shows an excerpt for defining the cloud provisioning. For

W7 urEnvironment catalogue
namespace M2M_PoC
serviceDef Publisher realizedBy PoC_part1

implies services MosquittoClient PyXB
serviceDef Broker

implies services Mosquitto
serviceDef Analytics realizedBy PoC_part2

implies services MosquittoClient PyXB SQLAlchemy
serviceDef Database

implies services PostgreSQL
serviceDef Report realizedBy PoC_part3

implies services SQLAlchemy ApacheWSGI

Figure 4. Mapping Architectural to Software Building Blocks

this, services are grouped in hostingUnits. Through model
transformations and automation, the latter are mapped to
server instances or clusters and appropriate IaaS clients are
generated. Please note, that the services reference the abstract
serviceDefs from Figure 4. This and further relationships
(implies) are exploited for automating the provisioning.
The DSL facilitates specification of custom cloud stacks as
required for different stages of the engineering lifecycle such
as development (DEV), testing (TEST), or production (PROD).
Choosing a profile the provisioning is performed similarly
for each of the defined stages. If desired this is done in
different cloud regions (also defined in the respective profile).
If not bound to certain stages (e.g., sensor data generators
for development and test) server instances (e.g., broker) are
provisioned for all stages (e.g., in all the related cloud regions).

D. Formalizing Dependencies of Services, Artifacts, and Roles

A declarative DSL allows to enumerate roles participat-
ing in the engineering process, artifacts, services, and their
dependencies in a generic way. From these, coordination
tools are generated (cf. [4]). Integrated into a VCS these
may send out notifications when artifacts are available and
synchronize workspaces accordingly. In addition to supporting
the coordination, automation tools are derived from the DSL
programs for preparing the deployment of developed services
to the respective hostingUnits and for pushing and applying
incremental changes through Puppet. Services that are devel-

http://mosquitto.org
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://postgresql.org
http://httpd.apache.org
http://httpd.apache.org
http://puppetlabs.com

oped such as the PoC parts are referenced by serviceDefs

following the realizedBy keyword (see Figure 4).

E. Integration with Configuration Management Software

Higher-level cloud services depending on IaaS are provi-
sioned through a CM system. For this, Puppet modules are
looked up for services using name-based matching. Using
the realizedBy keyword Puppet modules are automatically
synchronized with required software artifacts using the VCS.
Yet, module manifests need to be supplied by Puppet experts.
At execution time, the approach integrates with Puppet by
generating manifest files and cloud-init 6 configs (passed
as user-data when launching server instances). This way
the different engineers can work independently using their
workspace focusing on their actual task while the packaging
and deployment is automated.

F. Iterative Development and Continuous Deployment

When executing the generated IaaS consumer all the cloud
services (see right box of Figure 3) – starting from IaaS (i.e.,
security groups, volumes, and instances) and PaaS (i.e., Apache
HTTP server, Mosquitto, and PostgreSQL) to SaaS (i.e., PoC
Parts 1–3) – are provisioned in an interplay with Puppet and
thus the cloud application is deployed. If work is performed in
the VCS, e.g., when modifying a particular service, changes
can be applied incrementally using Puppet behind the scenes
facilitating continuous deployment. Changes to the service
topology are more critical: While in many cases they are
respected by the demonstrator, a reprovisioning may become
necessary, e.g., when renaming occurs. Please note that while
the latter takes longer until all services are provisioned it is still
fully automated and may be thus acceptable for prototyping.

IV. RELATED WORK

Rapid application development (RAD) (cf. [8]) can help to
obtain results in a timely and efficient manner. For instance,
various RAD frameworks exist (cf. [9]) that are tailored towards
web applications and that can be combined with the approach.
For the development of cloud applications a development PaaS
such as the Google App Engine 7 may provide ready to use
(technology) stacks of services while easing the development
of SaaS. In contrast this work permits to define and work with
customized cloud stacks. Realizing separation of concerns it
incorporates different roles in the engineering using tailored
DSLs and coordinates workspaces. As it directly operates
on IaaS deployments in an interplay with CM systems it is
independent of a PaaS and certain (technology) stacks.

As mentioned, TOSCA provides a metamodel for service
topologies. As a standard, it constitutes a desirable basis for
an implementation of the approach presented. Similar to the
presented work TOSCA can be combined with CM systems
(cf. [10]). The DSL building on top of Amazon Elastic Compute
Cloud (EC2) 8 concepts and used in this work for describing the

6http://launchpad.net/cloud-init
7http://cloud.google.com/appengine/
8http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf

provisioning permits to define rudimentary service topologies.
While they can be mapped to TOSCA the DSL aims particularly
at giving stakeholders access to the modeling. In fact, a
provisioning can be described in a couple of lines and can be
changed easily. Instead of the DSL shown the approach can use
any modeling as long as it does not slow down development
and iteration cycles. User studies have to be carried out in this
regard in order to answer the question which modeling tools
for service topologies are best for the development of cloud
applications as required in prototyping.

V. CONCLUSION

Agile development of cloud applications can be facilitated
using a model-based approach, e.g., using textual DSLs as
presented. For this a high degree of automation is required
beyond provisioning. Also, as many stakeholders are involved
in the engineering, it is crucial to harmonize their collaboration
and to provide them with means for participation. This is real-
ized by exploiting formalized dependencies and by providing
tailored DSL editors while abstracting from technologies such
as CM and IaaS solutions.

For wide applicability, the approach directly builds on top
of IaaS and does not rely on a development PaaS. Yet, in
case the code generator is adapted, the presented work can
build on different application programming interfaces (APIs) or
other technologies both for the provisioning and the CM. The
approach was successfully adopted for the rapid development
of several demonstrators and a PoC in an industrial context.

REFERENCES

[1] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to Adapt
Applications for the Cloud Environment,” in Computing. Springer, 2013,
vol. 95, pp. 493–535.

[2] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “CloudMF:
Applying MDE to Tame the Complexity of Managing Multi-cloud
Applications,” in IEEE/ACM 7th International Conference on Utility
and Cloud Computing (UCC). IEEE, Dec 2014, pp. 269–277.

[3] M. Iacob, D. Jonkers, H. Quartel, H. Franken, and H. van den Berg,
Delivering Enterprise Architecture with TOGAF and ARCHIMATE.
Enschede: BIZZdesign, 2012.

[4] T. Holmes, “Facilitating Development and Provisioning of Service Topolo-
gies through Domain-Specific Languages,” in 18th IEEE International
Enterprise Distributed Object Computing Conference Workshops and
Demonstrations, G. Grossmann, S. Hallé, D. Karastoyanova, M. Reichert,
and S. Rinderle-Ma, Eds. IEEE, Sep. 2014, pp. 422–425.

[5] ——, “Automated Provisioning of Customized Cloud Service Stacks
using Domain-Specific Languages,” in 2nd International Workshop on
Model-Driven Engineering on and for the Cloud, vol. 1242. CEUR-
WS.org, Sep. 2014, pp. 46–55.

[6] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Business,
2011.

[7] M. Poppendieck and M. A. Cusumano, “Lean software development: A
tutorial,” IEEE Software, vol. 29, no. 5, pp. 26–32, 2012.

[8] P. Beynon-Davies, C. Carne, H. Mackay, and D. Tudhope, “Rapid
application development (RAD): An empirical review,” European Journal
of Information Systems, no. 8, pp. 211–223, 1999.

[9] I. Vosloo and D. G. Kourie, “Server-centric web frameworks: An
overview,” ACM Comput. Surv., vol. 40, no. 2, 2008.

[10] J. Wettinger, M. Behrendt, T. Binz, U. Breitenbücher, G. Breiter,
F. Leymann, S. Moser, I. Schwertle, and T. Spatzier, “Integrating
Configuration Management with Model-Driven Cloud Management based
on TOSCA,” in 3rd International Conference on Cloud Computing
and Services Science, F. Desprez, D. Ferguson, E. Hadar, F. Leymann,
M. Jarke, and M. Helfert, Eds. SciTePress, 2013, pp. 437–446.

http://puppetlabs.com
http://puppetlabs.com
http://puppetlabs.com
http://puppetlabs.com
http://launchpad.net/cloud-init
http://httpd.apache.org
http://httpd.apache.org
http://mosquitto.org
http://postgresql.org
http://puppetlabs.com
http://puppetlabs.com
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf
http://launchpad.net/cloud-init
http://cloud.google.com/appengine/
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf

	I Introduction
	II Running Example: Context and Motivation
	III Domain-Specific Languages for Facilitating the Engineering of Cloud Applications
	III-A Approach Overview
	III-B Business Idea and Functional Analysis
	III-C Domain-Specific Language for Cloud Provisioning
	III-D Formalizing Dependencies of Services, Artifacts, and Roles
	III-E Integration with Configuration Management Software
	III-F Iterative Development and Continuous Deployment

	IV Related Work
	V Conclusion
	References

